
QCOMPARE(HTML5, QML)
A comparison of UI development technologies.

Casper van Donderen

Abstract

The mobile landscape is constantly evolving, from big carphones to the small and powerful
smartphones of today. This evolving landscape also brings new requirements to the mobile
user interface.

Nokia has embraced two technologies for mobile application development: QML and HTML.
Both technologies can be used to develop modern mobile applications, but the question is:
What is the best technology?. To find the answer to this question I have researched require-
ments for mobile applications by reading scientific articles. The next step was researching
the features and system requirements of both technologies by studying the technology spec-
ifications and developing applications using both technologies.

The main conclusion of the report is: The technologies are similiarly featured with HTML
having advantages in the web environment and QML making it possible to develop highly-
animated user interfaces.

Both performance-wise and memory-wise QML is clearly the best technology to develop
mobile user interfaces. Depending on the requirements regarding external data handling
and preference of the developer the choice for HTML can also be made.

i

Contents

List of Figures vii

Introduction ix

Problem definition xi

Assignment xiii
Sub questions . xiii
Objectives . xiii
Products . xiii

Plan of approach xv

1 Mobile 1
1.1 Maemo . 1

1.1.1 History of Maemo . 1
1.1.2 Maemo technologies . 2

1.1.2.1 Clutter . 2
1.1.2.2 GStreamer . 3
1.1.2.3 GTK+ . 3
1.1.2.4 Hildon . 3
1.1.2.5 MAFW . 4
1.1.2.6 OpenGL ES . 4
1.1.2.7 Qt . 4
1.1.2.8 Telepathy . 4

1.2 Requirements . 4
1.3 Conclusion . 5

2 Technologies 7
2.1 Qt . 7

2.1.1 History of Qt . 7
2.1.2 Qt 4 Features . 8

2.2 HTML . 9

iii

CONTENTS

2.2.1 History of HTML . 9

2.2.2 Basic structure . 9

2.2.3 Cascading Style Sheets . 10

2.3 QML . 11

2.3.1 History of QML . 11

2.3.2 Basic structure . 12

2.4 JavaScript . 13

2.4.1 History of JavaScript . 13

2.4.2 Basic structure . 14

2.4.3 JavaScript-HTML connection . 14

2.4.4 JavaScript-QML connection . 15

3 Comparison 17

3.1 Application design . 17

3.1.1 Main menu application . 18

3.1.2 Contacts application . 19

3.1.3 Media player application . 20

3.2 Functional comparison . 21

3.2.1 Animations . 21

3.2.2 Code reuseability . 25

3.2.3 Context Switching . 26

3.2.4 Font support . 28

3.2.5 Media playback . 28

3.2.6 Object placement . 29

3.2.7 Storage access . 32

3.3 Performance comparison . 34

4 Conclusion 37

Glossary 39

References 41

A SubClassedApplication source code 43

A.1 subclassedapplication.h . 43

A.2 subclassedapplication.cpp . 43

B Browser source code 45

B.1 main.cpp . 45

B.2 browser.h . 45

B.3 browser.cpp . 46

iv

CONTENTS

C Viewer source code 47
C.1 main.cpp . 47
C.2 viewer.h . 47
C.3 viewer.cpp . 47

D Storage handler source code 49
D.1 storagehandler.h . 49
D.2 storagehandler.cpp . 49

E <div> table source code 51

F QML table layout 53

G Memory tests source code 55
G.1 Menu (V3) . 55

G.1.1 HTML . 55
G.1.2 QML . 56

G.1.2.1 Menu.qml . 56
G.1.2.2 Contents.qml . 56
G.1.2.3 MenuItem.qml . 56

G.2 Contacts (V3) . 57
G.2.1 HTML . 57

G.2.1.1 contacts.html . 57
G.2.1.2 contactsCode.js . 57
G.2.1.3 contactsStyle.css . 58

G.2.2 QML . 60
G.2.2.1 Contacts.qml . 60
G.2.2.2 ContactAdder.qml . 61
G.2.2.3 Button.qml . 62

G.3 Player (V3) . 62
G.3.1 HTML . 62

G.3.1.1 player.html . 62
G.3.1.2 playerCode.js . 63
G.3.1.3 playerStyle.css . 64

G.3.2 QML . 66
G.3.2.1 Player.qml . 66
G.3.2.2 playerCode.js . 68

H Performance test source code 71
H.1 HTML . 71
H.2 QML . 71

v

List of Figures

1.1 Maemo OS200x Interfaces . 2
1.2 Maemo 5 Interface . 3
1.3 The Kano model . 5

3.1 Main menu v. 1 . 18
3.2 Main menu v. 2 . 18
3.3 Main menu v. 3 . 18
3.4 Contacts v. 1 . 19
3.5 Contacts v. 3 . 19
3.6 Contacts v. 4 . 20
3.7 Contacts v. 5 . 20
3.8 Player v. 1 . 20
3.9 Player v. 2 . 21
3.10 Player v. 3 . 21
3.11 Simple table-style layout . 29
3.12 QML layout . 30
3.13 Memory performance graph . 35
3.14 Aliasing in QML and QtWebKit . 36

vii

Introduction

This thesis is the result of my graduation project carried out at Nokia QDF (Qt Develop-
ment Frameworks) in Oslo, Norway. During this graduation project I have compared QML
and HTML technologies for developing mobile applications. The goal of the graduation
project was to show that I can apply all knowledge I have gained during the previous three
and a half years of the study ‘Mediatechnology’ at Utrecht University of Applied Sciences.
Mediatechnology at Utrecht University of Applied Sciences is a four-year bachelor degree
program containing courses regarding communication, design, software engineering and
media systems. A student graduating from this program will be able to design and build
multimedia applications.

QDF was founded as Quasar Technologies in 1994, later renamed to Trolltech and subse-
quently acquired by Nokia in 2008. The main product developed by QDF is the Qt toolkit.
Qt is a cross-platform application development toolkit running on various operating systems
providing an abstraction layer that allows developers to code once and deploy on several
target platforms. Target platforms include Windows, Linux, Mac, Windows Mobile and
Symbian.

This document is split out in several parts.
The first part contains information about the how and why of the project.
The second part is the core of this document, consisting of four chapters. The first chapter
contains background information about popular types of mobile applications. Continuing
I give information about the used technologies. The third chapter contains the actual
comparison of the technologies. The fourth chapter is a conclusion of the results of the
comparison.
The final part of this document contains the glossary, bibliography and appendices.

This document is written entirely in English since the graduation project was carried out
abroad.

ix

Problem definition

The sales figures for smartphones indicate that the smartphone market grew 12.3% in the
third quarter of 2009 compared to the third quarter of 2008, even though the whole mobile
segment only grew 0.1% between these periods [34]. This indicates that more features on
phones is in great consumer demand.

Nokia has chosen Qt to become the main technology on Nokia smartphones and mobile
computers [11]. Currently there are multiple development paths available in Qt tuned to
develop feature-rich mobile applications, namely Qt C++, QML and QtWebKit. There is
a strong push from within Nokia to use HTML and JavaScript technologies for mobile
applications. These technologies have been combined in the Nokia WRT (Web Runtime).
For high-performance applications Qt should be used.
Before being bought by Nokia, the people at QDF had started development of QML. The
development of QML gives developers another option to easily develop mobile widgets.
Therefore the problem tried to be solved in this thesis is:

Which of QML/JavaScript or HTML5/JavaScript is a better technology for developing
mobile User Interface applications?

Herein QtWebKit is used for HTML5 development.

xi

Assignment

As stated in the pages before, I need to find an answer to the question:

Which of QML/JavaScript or HTML5/JavaScript is a better technology for developing
mobile User Interface applications?

QtWebKit will be used for the HTML5 content developed during this project. The answer to
the central question should give Nokia a better understanding in determining a development
path for mobile interfaces developed using Qt. I will have to compare the two technologies
both feature-wise and performance-wise to be able to find an answer to the central question..

Sub questions

There are several sub questions which will help me find the answer to the problem:

• What kind of application is relevant on a mobile device with cellular capabilities?
• What is HTML?
• What is QML?
• What is JavaScript?
• What are the functional differences between HTML5 and QML?
• What are the performance differences between HTML5 and QML?

Objectives

At the end of the graduation project I want to have created a comparison report objectively
describing the advantages and disadvantages giving the company a better understanding in
choosing a development path for mobile interfaces based on Qt.

Products

The graduation project will yield:

• Developed comparison report.
• Multiple applications developed both in QML and HTML5. These applications should

be as similarly featured as possible in both technologies.

xiii

Plan of approach

The project will be divided into several phases which each have a different goal. These
phases are called the orientation phase, the comparison phase and the finalization phase.

• Orientation phase (Feb 1 - Mar 24)
This phase is at the start of the graduation project and focuses on desk research,
comparing what HTML, QML and JavaScript are, how they work, what their syntax
is like and what their features and possibilities are. Firstly research is done on the
mobile market space. What are must-have applications and which features do these
applications require? The research on language features will then use information
gathered during the first research to select focus areas.

• Comparison phase (Mar 25 - May 24)
This phase starts with a short comparison of HTML and QML which should show
obvious technology shortcomings. The next step is developing the applications. First
a short design stage where the general application schematics will be laid out. The
actual development will be done using the Extreme programming technique [44]. The
final step in this phase is finishing the comparison report.

• Finalization phase (May 25 - Jun 20)
The shutdown phase consists of a few weeks improving the applications and finishing
the presentations to be done, both at the company and at the university.

xv

1

Mobile

This chapter is about the background of the project. What kind of mobile platform will be
used? What kind of applications are mandatory to have? What should be kept in mind?
What can be the pain points? etc.

In this report ‘mobile’ refers to a cellphone running the Maemo mobile computer operating
system. There is no official definition for what a smartphone is. This report uses the most
commonly used definiton of smartphone, which is: “A smartphone is a large-screen, data-
centric, handheld device designed to offer complete phone functions whilst simultaneously
functioning as a personal digital assistant (PDA).” [15]

1.1 Maemo

Maemo is a software platform consisting of an operating system and an SDK (Software
Development Kit) developed by Nokia, based on Debian GNU/Linux, developed in collabo-
ration with several open-source projects like GNOME, Xorg and GStreamer [2]. One of the
goals of the Maemo project is providing developers with a completely open development
platform [4].

1.1.1 History of Maemo

The first public Maemo release was ‘OS2005’ for the Nokia 770 Internet Tablet in November
2005 [8]. This first release contained an Opera-based webbrowser, a few basic applications,
utilites and games and can be considered as a first step in creating an open-source product
[20].
In June 2006 a new Maemo version ‘OS2006’ was released, which contained a new kernel
version, voice chat support, a finger-friendly on-screen keyboard and improved device per-
formance. Due to API-breakage all existing applications had to be recompiled [21].
The next Maemo release was called ‘OS2007’, released bundled with the Nokia N800 in
January 2007. This Maemo version contained an updated browser with Flash 7 support,
podcast support and greatly improved performance due to the new hardware [22].

1

1. MOBILE

Figure 1.1: Maemo OS200x Interfaces - Screenshots of the OS2007 and OS2008 interface,

displaying the home screens of both versions.

‘OS2008’ released in 2008 for the Nokia N810 was the next installment in the Maemo soft-
ware platform series. This version exchanged the Opera browser for a Mozilla-based browser
and gained Flash 9 support. Other notable improvements over the previous versions were a
new home screen, official Skype support, a navigation application (due to the N810 gaining
a GPS recevier which the older devices did not have) and UPnP/Windows network support
[10]. There was a significant update to OS2008 which was codenamed ‘Diablo’. Diablo
contained an improved application management application which allowed for automatic
software updates and contained a new email-client [41]. This was the last Maemo software
platform with an ‘OS200x’ moniker.
Maemo 5 is the most recently released Maemo platform. It was released publicly at the
2009 Maemo Summit in Amsterdam, the Netherlands [45]. Key features of Maemo 5 are
that it is the first Maemo version which runs on a device that has cellphone capabilities
like calling, texting and mobile internet. Other key features of this platform version are a
completely redesigned UI, official support for Qt, location sharing, improved multitasking
support, integration with the Nokia Ovi application store and an improved web browser
with full Flash 9.4 support [5]. Maemo 5 runs on the Nokia N900 Mobile Computer.

1.1.2 Maemo technologies

As mentioned before, the Maemo platform integrates several open-source technologies in
one common user environment [28]. This subsection highlights some of the core technolo-
gies.

1.1.2.1 Clutter

The Clutter open-source software library is designed to make use of OpenGL hardware
acceleration when rendering the user interface. There is support for behavioral animations,
JSON scripts, media playback, physics and more. Clutter is developed by OpenedHand,
which is currently a part of Intel [1].

2

1.1 Maemo

1.1.2.2 GStreamer

GStreamer is used as the media handling library on Maemo. GStreamer itself is a library
which allows a developer to ‘create a graph of media handling components’ [9]. This means
that a developer can use several building blocks to create a multimedia application.
An extremely simple example of this is as follows:

gst-launch filesrc location=music.mp3 ! decodebin ! pulsesink

In this example the gst-launch utility is launched. This utility loads a file from location
music.mp3 and sends it to the decodebin. The decodebin decodes the file by automatically
selecting the correct codec. The output of this decoding is then sent to the pulsesink. The
pulsesink integrates with the Pulseaudio playback framework which will cause the audio to
be sent to the selected output (either the speakers or the headphone plug) [40].

1.1.2.3 GTK+

GTK+ (The GIMP ToolKit) is a toolkit providing similar functionality to Qt. GTK+ was
first developed for GIMP (GNU Image Manipulation Program). Over time GTK+ has
developed to a toolkit which is used by a large number of applications and is the main
component of the GNOME open-source desktop [39]. Known applications and solutions
which are based on GTK+ include Mozilla FireFox and the OpenMoko phone interface. All
Maemo interfaces up to Maemo 5 are written using GTK+.

1.1.2.4 Hildon

Hildon is a set of widgets based on GTK+. These widgets were developed to be more
finger-friendly than normal GTK+ widgets. The interfaces of Maemo up to and including
Maemo 5 were developed using Hildon.

Figure 1.2: Maemo 5 Interface - Screenshots of the Maemo 5 interface, displaying the

desktop, multi-tasking view and browser. These applications where created using Hildon.

3

1. MOBILE

1.1.2.5 MAFW

MAFW stands for Multimedia Application Framework and is a high-level plugin framework
which eases integration of multimedia features like playlists and web services. Because
MAFW is a plugin framework it is independent of underlying multimedia frameworks like
GStreamer (see above). MAFW provides API for two kinds of plugins: Sources and Ren-
derers. A Source plugin allows for content gathering, an example is a last.fm plugin. A
Renderer plugin provides extended playback functionality (For example allowing a Maemo
device to be a UPnP-server [42]).

1.1.2.6 OpenGL ES

OpenGL ES is an abbreviation for OpenGL for Embedded Systems. OpenGL ES is a subset
of desktop OpenGL optimized for mobile device usage. OpenGL is a 3D Graphics API which
enables hardware accelerated 3D rendering. There exist several versions of OpenGL ES.
Version 1.x provides fixed-function pipeline API where all OpenGL coordinate transforma-
tions are done against a fixed matrix. Version 2.x replaces this fixed-function pipeline by a
programmable-pipeline [6]. This allows developers to manipulate pixels and vertices after
they have been put in the pipeline.

1.1.2.7 Qt

Qt is a cross-platform application development toolkit developed by QDF. Within Maemo,
Qt will change from a community-supported toolkit to the officially supported platform
toolkit with the change from Maemo 5 to Maemo 6 [28]. More about Qt can be found in
section 2.1.

1.1.2.8 Telepathy

Telepathy is the library that provides instant messaging and VoIP possible on the Maemo
platform. Telepathy is a plugin architecture focussed on real-time communication that lets
applications share information about communcation availability. You could for instance
create a messaging application that logs in to Windows Live Messenger. If you have a word
processor that also communicates with the Telepathy framework then the word processor
would ‘know’ about the availability of your Messenger contacts [7].

1.2 Requirements

Being a mobile phone there are certain requirements to be met. As indicated in fifure 1.3,
[35] and [43] must-haves do not contribute to a positive consumer satisfaction per se, but
they can cause dissatisfaction. Must-haves are certainly the most important part for mobile
phone usage as indicated in [43]. These must-haves in a mobile phone mean that the user
should have easy access to his contacts, messages, media and that he should be able to use
simple applications such as a stopwatch and calculator.
Performance and exciting new features however have a prominent role in causing consumer

4

1.3 Conclusion

satisfaction. When the performance of the device is lower than expected this will lead to
greatly deteriorated consumer satisfaction. Exciting new features cannot cause dissatisfac-
tion, but they acount for a big amount in consumer satisfaction.

satisfied

dissatisfied

Need
well fulfilled

Need
not fulfilled

indifference

Excitement

Performance

Basic

Figure 1.3: The Kano model - The figure shows the Kano model of consumer preferences.

Adapted from [35]. The image visualizes the effect of features on consumer satisfaction and

consumer needs.

1.3 Conclusion

Based on the platform capabilities and the requirements I will focus on simple must-have
applications like a contacts, messaging and multimedia player application. The basic facili-
ties for creating these applications are there. The research from [43] states that these basic
tasks are the most important for a user group.
Another advantage of building these simple applications is that for the sake of this thesis
there is no need of conceptualizing something new.

5

2

Technologies

2.1 Qt

This section contains background information about the Qt toolkit. Qt is a C++ application
development toolkit written in C++ enabling developers to ‘code less, create more, deploy
everywhere’ [24]. Qt contains several modules tailoring to developer needs. More about
Qt modules can be found in subsection 2.1.2. During this project several parts of the Qt
toolkit will be used.

2.1.1 History of Qt

In fifteen years time Qt has grown from a tookit used by a few people to a product used
by millions of people daily [16].
The history of Qt started in 1988 when one of the two original Qt developers (Håvard
Nord and Eirik Chambe-Eng) needed to make a GUI (Graphical User Interface) framework.
In 1990 Håvard and Eirik met to create a database application that needed to run on
the Macintosh, Windows and UNIX operating systems. This application caused the two
developers to think about making a full-fledged C++ GUI toolkit.
In 1993 the idea of the ‘Signal-Slot mechanism’ was devised and over the next two years
the basis of Qt was laid. The name Qt was chosen because the letter Q looked nice in the
font used by one of the developers and the t stands for toolkit.
In 1995 the two developers got their first customer and hired a third person. The coming
ten months they would not get any other customer and relied on this first customer to
provide income. Then finally in March 1996 the European Space Agency (ESA) became
the second customer to use Qt.
In September of 1996 Qt version 1.0 was released. By now Trolltech (as the company was
called at the time) had eight customers with a combined total of eighteen licenses. In 1996
the KDE project was also founded. The KDE project develops a Cross-Platform Desktop
Environment. This desktop environment caused the Linux community to embrace Qt
Qt 2.0 was released in 1999 with a new Open-Source license called the Qt Public License
(QPL). The following year Qt Embedded was released which led to a re-licensing of Qt

7

2. TECHNOLOGIES

under the GNU General Public License (GPL).
In 2001 Qt 3.0 was released. Qt 3.0 was a huge step forward over Qt 2. Qt now contained
over half a million lines of code and contained 42 new classes over Qt 2. Qt 3 did not
provide support for embedded development.
In 2005 Qt 4 was launched which is the version that is still in development today. Qt 4
gained a new modular approach to application development, and added renewed support
for embedded platforms. More about the Qt 4 modules in section 2.1.2.
Current well known solutions using Qt 4 are KDE, Google Earth, Autodesk Maya and Skype.

2.1.2 Qt 4 Features

Qt 4 has brought an enormous amount of improvements over Qt 3. Notably the split into
several modules [26] [25]. Currently the following modules exist:

• QtCore - The main Qt module. This module contains all basic classes in Qt. Examples
are QCoreApplication, QList and QString.

• QtDeclarative - The module containing classes for use with the Qt Declarative Markup
Language (QML). The features provided by this module will be used in this project.
QtDeclarative is a new module, first included in Qt 4.7.

• QtGui - The QtGui module contains classes for creating GUI applications. Classes
for using the Graphicsview framework, QWidgets, toolbars, etc. can be found in this
module.

• QtMultimedia - QtMultimedia is a module introduced with Qt 4.6. This module gives
the developer low-level access to the multimedia hardware in a device.

• QtNetwork - QtNetwork makes it possible to create networked applications like web
servers and clients.

• QtOpenGL - The module containing convenience API for developing OpenGL appli-
cations. There is a QGLWidget class that provides the developer with a surface to
use for OpenGL rendering.

• QtSql - QtSql is a bridge for using database systems. There exist several database
plugins for QtSql: MySQL, PostgreSQL, SQLite and others.

• QtSvg - Module that allows the loading of SVG vector graphics images.
• QtTest - The QtTest module is a convenience library to write unittests for a Qt

application.
• QtWebKit - Module containing the Qt version of the WebKit web browser engine.
• QtXml - XML handling module. Makes parsing and editing XML documents possible.
• Phonon - High-level multimedia handling module. This module uses plugins called

backends to play multimedia content. There are several backends including: Direct-
Show, Quicktime and GStreamer.

• Qt3Support - Convenience module for developers porting their applications from Qt
3 to Qt 4.

During the lifetime of Qt 4 several new important technologies have been added [27]. These
include:

• The Graphicsview framework - This framework provides something similar to a painters’
canvas where the developer can lay-out images and text.

8

2.2 HTML

• SVG export
• Phonon
• WebKit support
• Gestures support
• QML (Qt Declarative Markup Language)

2.2 HTML

HTML stands for HyperText Markup Language and is one of the technologies used in
the comparison carried out during this project. Firstly the background of HTML will be
explained, followed by important features and the usage of Cascading Style Sheets (CSS).

2.2.1 History of HTML

HTML is a continuation of Hypertext. A concept coined in 1965 by Ted Nelson [14]. There
has been a lot of Hypertext development before that. In 1945 a proposal was made for a
device that allowed a reader to go through ‘linked’ texts on microfilm: the Memex [18].
Over the next decades Hypertext would be developed and used further, the main goals
being extending human intellect and creating linked documents [23].
Another important development of the time was the start of the ARPANET network. This
would become the predecessor to the internet as we know it today [3]. This network would
be used to send the first email messages.
In 1991 Tim Berners-Lee wrote a document specifying the first 20 HTML tags and con-
tributed this document to a mailinglist [13][12]. This started the development of the HTML
markup language. In 1995 HTML 2 was released which added official support for tables
and image maps. HTML 3.2 was released in January 1997. HTML 3.2 tried to remove
overlap between different proprietary HTML tags. HTML 4.0, released in December 1997,
contained three variations (strict, transitional and frameset). In December 1999 HTML
4.01 was released with minor edits over HTML 4.0. HTML 4.01 is the most recent released
HTML version.
HTML 5 will be the next HTML version. Currently HTML 5 is a working draft started in
January 2008. HTML 5 is the HTML version used in this project.

2.2.2 Basic structure

HTML consists of tags. A tag defines an element, which can be a link, image, movie, etc.
Each element starts with a start-tag and most elements end with an end-tag. Each tag
starts with a less than-sign (<) and end with a greater-than sign (>). An end-tag differs
from a start-tag in that it has a forward slash (/) after the less-than sign. Some tags can
be closed immediately, like the
 tag which is used for a linebreak. Here the forward
slash is at the end of the tag to signify that the tag is being closed immediately.
Let’s start with a simple example of HTML code.

Hello

9

2. TECHNOLOGIES

The -tag is used to define a section of text that should be printed in a bold font.
Therefore Hello would be displayed.

Each HTML document has a standard structure which can be extended.

<!DOCTYPE html>
<html>
<head>

<meta charset="UTF-8">
<title>Document title</title>

</head>
<body>

<p>Contents of the first paragraph.</p>
</body>

</html>

The <!DOCTYPE>-tag is used to specify the schema of the document. In this case the
document identifies itself as a HTML document.
The <html> and </html> tags are used to specify which part of the document is HTML
code. Text outside of the <html> and </html> is treated as plain-text.
In the head section of the document the title, meta information and external script sources
should be specified. In this example the document uses UTF-8 encoding and it’s title is
‘Document title’. This title is displayed as window or tab title in the browser.
The body of the document contains all data that should be presented to the user of the
webpage. Paragraphs within the body are separated by <p> and </p>-tags.

An important aspect of Hypertext is the linking of external sources. In HTML 5 this can
be done with several tags, depending on the content:

• <a> - for linking to another (part of a) document.
• <audio> - for audio files.
• <embed> - for embedding content that should be loaded through a plug-in, like

Flash content or a Java applet.
• - for images.
• <link> - for linking external page resources. This tag is mostly used for linking style

sheets.
• <video> - for video files.

2.2.3 Cascading Style Sheets

Cascading Style Sheets (CSS) are used to specify styling hints for markup languages like
HTML [17]. CSS was designed to separate document content (which is in the HTML file)
from document presentation. This separation makes it easier to read the HTML-file and
makes it possible for separate pages to use the same styling without repeating the styling
information.

A Cascading Style Sheet has to be added to HTML files using the <link>-tag.

<link href="stylesheet.css" rel="stylesheet" type="text/css" />

10

2.3 QML

The href property specifies the location of the CSS file. The rel-property specifies the usage
of this link, which should always be set to ‘stylesheet’ for loading a stylesheet. Similarly the
type-property should always be set to the ‘text/css’-mime-type.

CSS consists of selectors, classes and ID’s [29]. Any HTML element is a selector by default.
In a CSS-file the names of the standard HTML elements are used without a prefix. A simple
way to get the page background to be red would be by setting the background-color property
of the body element to red. In CSS this looks like this:

body { background-color: red }

ID’s and classes are special selectors. An ID is used to specify a unique object within the
HTML DOM tree, for instance a sidebar. ID’s are prefixed by a hash (#) character.

#sidebar { font-family: sans-serif }

In this example the font of the element with ‘sidebar’ as its id property will be sans-serif.
Classes are used for common elements, for example a class called ‘comment’ would be
applied to all comments in the page. Class selectors are prefixed by a dot (.) character.

.comment { font-size: small }

In this example the font size of all elements with ‘comment’ as their class property will be
small.

2.3 QML

QML stands for Qt declarative Markup Language. QML is the second technology used
in the comparison carried out during this project. Firstly there is a subsection about the
history of QML followed by a basic technology overview.

2.3.1 History of QML

Development of the framework behind QML has started somewhere near the end of 2007,
start of 2008 [31]. At that time there was a demand for highly animated GUIs which could
not be done in Qt at the time. This new project was called “Qt Kinetic” and it’s goal was
to enable developers to easily create highly animated GUIs without the need to manage
complex data structures which are inherent to complex animated GUIs.
At this time QML was still a language similar to HTML and XML in that it used XML
to describe objects [31]. Over the next few months the Qt Animation framework was
implemented along with a state machine [30][32].
In May 2009 QML had changed to a different syntax [38], the syntax now looked less like
XML and more like JSON (JavaScript Object Notation). At the same time the Anchor
Layout was also in development [37]. In January 2010 support for QML was integrated in
the Qt IDE.

11

2. TECHNOLOGIES

2.3.2 Basic structure

QML is an interpreted language where a runtime engine parses the content of the QML
files, which in turn generates Qt C++ QML elements. Several standard QML elements are
shipped with Qt, like the Rectangle, TextEdit, multimedia elements and elements to handle
animations.

As stated above QML has a syntax similar to JSON. QML code to create a rectangle that
which 100 by 100 pixels big and placed at the 0,0 position one would look as follows:

Rectangle
{

width: 100
height: 100

}

The name of a QML element always starts with a capital letter. The contents of the element
are enclosed in curly braces. Note the usage of the colon in the property definition. This
colon indicates the creation of a property binding rather than a property declaration. What
this means is best demonstrated using an example.

Rectangle
{

id: firstRectangle
width: 100

}

Rectangle
{

id: secondRectangle
width: firstRectangle.width

}

If the width of firstRectangle was now to change the width of secondRectangle would also
change automatically. This binding of properties is one of QML’s most important features.

Custom C++ QML elements can be developed by using a macro and a template function.

#define QML_DECLARE_TYPE(T)
template<typename T>
int qmlRegisterType(const char *uri, int versionMajor,

int versionMinor, const char *qmlName)

Type T is the class name of the class that should be available from QML. The qmlRegis-
terType template adds the QML type to the pool of available elements. This new custom
element can now be used from a QML file by using the name defined as qmlName in the
qmlRegisterType(...) macro.
The prefered method to develop custom QML elements through C++ is by using a QDeclar-
ativeExtensionPlugin. This plugin can be loaded by the ’qml’ runtime application shipped
with Qt and allows the elements which are defined within this plugin to be used in QML
applications. A minimal QDeclarativeExtensionPlugin class looks as follows:

12

2.4 JavaScript

#include <QtDeclarative>

QML_DECLARE_TYPE(CustomElement);

class CustomElementExtensionPlugin : public QDeclarativeExtensionPlugin
{

Q_OBJECT

public:
void registerTypes(const char *uri)
{

qmlRegisterType<CustomElement>(uri, 0, 1, "CustomElement");
}

};

Q_EXPORT_PLUGIN(CustomElementExtensionPlugin);

This class registers the type CustomElement in the QDeclarativeEngine who calls this plugin
method.
QML C++ plugins are not loaded automatically. The plugin has to be specified in a ‘qmldir’
file. a ‘qmldir’ file is a file containing all external resources which the QML runtime should
load. If the qmldir file is located in the same directory as the QML file which is loaded an
import statement is not needed within the loaded QML file. To be able to use our plugin
we should add a line to the qmldir file:

plugin customelementextensionplugin

This will cause our extension to be loaded and automatically make the QML types defined
using the qmlRegisterType(...) macro available.

2.4 JavaScript

JavaScript is the scripting technology used in both HTML and QML. The first two subsec-
tions deal with the history and structure of JavaScript. Continuing there are two subsections
describing the way JavaScript interacts with HTML and QML respectively.

2.4.1 History of JavaScript

At the start of the common internet webpages were completely static. There was a need
to be able to interact with a webpage. To be able to handle this interaction immediately
there would need to be an embedded programming language within the browser. To this
end JavaScript was developed [19].

JavaScript was developed by Netscape in 1995. At first it was called Mocha, later renamed
to LiveScript and, due to a licensing deal where Netscape would integrate Java in its web
browser, JavaScript [36].

Over the next years JavaScript has become the dominant web scripting technology gaining
even greater dominance after the creation of the “AJAX” combination of dynamic web
page creation technologies and the evolving of Web 2.0.

13

2. TECHNOLOGIES

2.4.2 Basic structure

JavaScript was developed to be used by non-programmers. Because of this it was de-
cided that some features used in multiple other languages would not become available in
JavaScript to be able to decrease the learning curve.

JavaScript consists of methods called functions which can be called from functions. A
simple function that adds two variables and returns the result would look like this:

function adder(one, two)
{

return one + two;
}

Notice there is no variable type specified for the variables. All variables in JavaScript are
casted automatically. The JavaScript engine verifies the validity of an operation and returns
‘Not a Number’ (NaN) in case of a numeric operation failing and ‘null’ in other cases.

JavaScript does not contain explicit classes. The developer can define JavaScript functions
which have other functions as prototypes, making them essentially member functions. For
instance:

function addContact(firstName, lastName, phoneNumber)
{

this.firstName = firstName;
this.lastName = lastName;
this.phoneNumber = phoneNumber;

}

function showName()
{

alert("Name of contact: " + this.firstName + " " + this.lastName);
}

addContact.prototype.showName = showName;

In this example showName() is a function of the addContact() class. When a variable is
now defined to be of the addContact type you can call variable.showName():

function display()
{

var contact = new addContact("John", "Doe", "+123456789");
contact.showName();

}

In this last example an alert box will pop-up with the content: “Name of contact: John
Doe”.

2.4.3 JavaScript-HTML connection

JavaScript objects can be instantiated in an HTML page in two ways. Either through
external files in the head of the document:

14

2.4 JavaScript

<head>
<script type="text/javascript" src="pagescript.js"></script>

</head>

Or by embedding the JavaScript content within the body of the document:

<body>
<script type="text/javascript">
document.write("JavaScript text");
</script>
</body>

The actual modification of the HTML file is done through the internal representation of
HTML objects, which is called the DOM (Document Object Model) tree. In the above
example the text “JavaScript text” is inserted at the position of the codeblock.

JavaScript can also be used to insert content at arbitrary positions. To do this JavaScript
contains the document.getElementById method which uses the same ID’s as CSS (see
section 2.2.3).

<script type="text/javascript">
function notEmpty(){

var myTextField = document.getElementById(’myText’);
if(myTextField.value != "")
{

alert(myTextField.value);
}
else
{

alert("The textfield is still empty.");
}

}
</script>
<input type=’text’ id=’myText’ />
<input type=’button’ onclick=’notEmpty()’ value=’Form Checker’ />

In this example the ID of the text field is ‘myText’ which is assigned to the myTextField
variable in JavaScript. When the user clicks on the button JavaScript checks the contents
of this text field and shows a pop-up containing either the text in the text field or the string
“The textfield is still empty.”.

2.4.4 JavaScript-QML connection

JavaScript is a core component of QML. All operations written within a QML file are
basically JavaScript operations. Let’s demonstrate this behaviour:

width: parent.width - 5

In this example the width of the current QML element is the width of its parent decreased
by five. The change of the width property is calculated by evaluating the expression using
the JavaScript parser. In this example the property binding makes sure that the width of

15

2. TECHNOLOGIES

the current item is always five pixels smaller than its parent’s with (see subsection 2.3.2).

In QML the developer can also declare and use JavaScript functions. functions defined
within a QML element can be used to add methods to this specific QML element, these
functions are not available to other elements:

Rectangle
{

function adder(one, two)
{

return one + two;
}

MouseRegion
{

anchors.fill: parent
onClicked: print(adder(1, 2))

}
}

The developer can also choose to have the JavaScript code in an external file, which makes
all functions in this JavaScript file available to all QML elements in the QML file which
imports the JavaScript file.
Using an external file with JavaScript code requires this JavaScript file to be imported:

import "code.js" as Code

The keyword following the ‘as’ identifier is now to be used to access functions within this
JavaScript file. The following example behaves exactly the same as the above example,
except for that the code is now in an external file.

import "code.js" as Code

Rectangle
{

MouseRegion
{

anchors.fill: parent
onClicked: print(Code.adder(1, 2))

}
}

QML exposes all functions in the JavaScript global object and adds some extra functionality
to this global object. Added functionality includes generating MD5 hashes, converting date
and times and the modification of colors by applying a tint to the color. The more important
added functionalities however are the addition of a mechanism to dynamically generate QML
elements, access a local SQLite database and the addition of methods to query external
data using XmlHttpRequest.

16

3

Comparison

3.1 Application design

In section 1.3 the conclusion was: Users expect several basic applications to be available on
every phone. This is the reason for the decision to only develop simple applications which
everybody expects on a mobile phone. These applications should however still contain most
use cases a mobile application developer would encounter:

• Navigation between application phases - A game developer would want to go from
the main menu to the game.

• Loading and saving content - This would be usable for a Twitter application which
stores tweets locally.

• Scrolling
• Animations
• Media playback
• Orientation changes - Most mobile phones use a rectangular screen and widescreen

media content. Users would want to display their media content as big as possible.

Three applications will be developed:

• A main menu to get to the other applications. This application will be used to test
switching between application phases.

• A contacts application where it should be possible to add and remove contacts. This
application will be used to test scrolling and storage functionality.

• A media player which should be able to play back an audio file. This application is
used to test animations, media playback and orientation changes.

Each application will have several versions which will add new features. The usage of
versions will make it easier to compare feature differences, differences in amounts of code
needed and differences in performance. An added advantage is decreasing the risk of failure.
If certain requirements are not met for a specific version an effort can be made to develop
a later version.

The applications are compared using the ‘qml’-runtime application for QML and a simple

17

3. COMPARISON

QtWebKit browser (sourcecode in appendices A and B) for HTML. All applications will be
developed to use the least amount of lines of code while retaining all necessary features.

3.1.1 Main menu application

The main menu application is the simplest application of the three. The main goal of the
main menu application is to get to the other applications. This application is used to test
the ability to easily load other applications within the same environment.

The main menu application has the lowest priority. Version 1 is the must-have version to
be usable. All other versions have ‘would like to have’ priority.

Contacts
Media player

Figure 3.1: Main menu v. 1 - Version 1 of the main menu contains two clickable items which

are plain text.

Image

Image

Figure 3.2: Main menu v. 2 - Version 2 replaces the text from version 1 by images.

Image Image

Contacts Media player

Figure 3.3: Main menu v. 3 - Version 3 moves the images from version 2 to the center and

adds the name of the application.

Version 4 of the main menu application will look exactly the same as version 3, except that

18

3.1 Application design

the menu content is now dynamically loaded and not explicitly typed anymore. This means
that the content of the folder containing the applications should be automatically read and
image buttons should be placed at their respective places automatically.

3.1.2 Contacts application

The contacts application is the most data intensive application. The main goal of the
contacts application is allowing for data manipulation. The contacts application is used to
test scrolling and storage functionalities.

The contacts application has five versions. Of which version 1, 2, 3 and 4 have ‘must-have’
priority. Version 5 would be nice to have, but is not mandatory.

Contact A: +31612345678
Contact B: +4712345678

Return...

Figure 3.4: Contacts v. 1 - Version 1 of the contacts application contains a hard-coded text

list of contacts and a text-link to return to the menu.

Version 2 of the contacts application looks the same as version 1. The hard-coded list will
be replaced by a static database. This database should be cross-platform and preferably
the same database should be used by both the QtWebKit and QML application.

Contact A: +31612345678
Contact B: +4712345678

Add Contact

Figure 3.5: Contacts v. 3 - Version 3 of the contacts application allows for adding contacts

to the database and replaces the return-text by an icon.

19

3. COMPARISON

Contact A: +31612345678

Contact B: +4712345678

Add Contact

Figure 3.6: Contacts v. 4 - Version 4 of the contacts application places the contacts in boxes

and allows for scrolling the content.

Contact A: +31612345678

Contact B: +4712345678

Add ContactRemove Contact

Figure 3.7: Contacts v. 5 - Version 5 of the contacts application adds a ‘remove contact’

button. To be able to remove a contact the user should also be able to select the contact to

delete.

3.1.3 Media player application

The media player application focuses on playback of local files and device orientation
changes. This application is used to compare screen orientation capabilities, media playback
and animation functionality and performance.

All three versions of this application have to be developed to compare all of these function-
alities.

Return...

Play-
Pause

Figure 3.8: Player v. 1 - Version 1 of the media player application only contains a button

which changes from play to pause and causes an audio file to play or pause.

20

3.2 Functional comparison

Play-
Pause

Seek
back

Seek
forward

Artist - Title

01:23

Figure 3.9: Player v. 2 - Version 2 of the media player application adds capabilites for

navigating through the audio file, displays meta-information about the current file and shows

the current time.

Play-
Pause

Seek
back

Seek
forward

Artist - Title

Play-
Pause

Seek
back

Seek
forward

Artist - Title

01:23 01:23

Figure 3.10: Player v. 3 - Version 3 of the media player application adds support for arbitrary

screen orientation changes (Landscape to Portrait). When the screen orientation changes all

objects within the visible area have to animate to their new positions.

3.2 Functional comparison

3.2.1 Animations

QML provides three different ways to specify animations. The first method specifies an
animation following an action. This method uses elements like PropertyAnimation and
ParallelAnimation. To animate a rectangle moving right 50 pixels when it is clicked the
following could be used:

Rectangle
{

color: "black"
height: 150
id: rectangle
width: 150

PropertyAnimation

21

3. COMPARISON

{
duration: 200
id: animation
property: "x"
target: rectangle
to: rectangle.x + 50

}

MouseArea
{

anchors.fill: rectangle
onClicked:
{

animation.start()
}

}
}

The animation that is used here is exactly the same every time. Therefore a default
animation can also be specified. The Behavior element can be used to specify these default
animations for property changes. Using the Behaviour element is the second method for
QML animations. To automatically animate the rectangle moving to its new position when
the x-property changes using a behavior looks like this:

Rectangle
{

color: "black"
height: 150
id: rectangle
width: 150
Behavior on x
{

NumberAnimation
{

easing.type: "Linear"
duration: 200

}
}

MouseArea
{

anchors.fill: rectangle
onClicked:
{

rectangle.x = rectangle.x + 50;
}

}
}

In this example the Linear easing type is specified. QML contains more than 40 easing
types by default, ranging from the standard linear and parabolic functions to elastic and
bouncy curves like InElastic and OutBounce.
The third and final method for animations in QML is the use of states and transitions. A
QML State element describes the properties for elements when the application is in a specific
state. States can be used to specify the look and feel of an application between portrait and
landscape orientations. To have an animated switch between states the Transition element

22

3.2 Functional comparison

is used. The example where the rectangle is moved when it is clicked can also be developed
using states. A big difference however is that when using a behaviour or property animation
the animation is done again when the rectangle is clicked again. When using states the
object can only move once to go to the new state.

Rectangle
{

color: "black"
height: 150
id: rectangle
width: 150

states: [
State {

name: "moved"
PropertyChanges {

target: rectangle
x: 50

}
}

]

transitions: [
Transition {

NumberAnimation { properties: "x"; duration: 200 }
}

]

MouseArea
{

anchors.fill: rectangle
onClicked:
{

rectangle.state = "moved"
}

}
}

Animations can also be used in sequence or parallel and a combination of those, for instance
to run parallel animations in sequence.

QtWebKit supports two types of animations: transitions and keyframe animations. Ani-
mations are not an official part of the HTML5 specification yet, this means that for now
WebKit specific commands need to be used. All animations in WebKit are style options
described through CSS3.

CSS3 transitions specify how an HTML object will change from its previous state to the
new state. These transitions are applied for every modification that is done, no matter how
big the change in the animated property is. An example to fade out a div using an opacity
transition:

<body>
<style type="text/css">

div
{

border-style: solid;
border-width: 3px;

23

3. COMPARISON

opacity: 1;
-webkit-transition: opacity 1s linear;

}
div:hover
{

opacity: 0;
}

</style>
<div> </div>
</body>

In this example the opacity changes from 1 to 0 in one second, where the duration is not
related to the change of the property. This means that if the developer changes the new
opacity to be 0.5 instead of 1, the transition will still take one second, effectively doubling
the animation time. This transition uses the linear transition type, WebKit CSS3 contains
six transition types: ease, linear, ease-in, ease-out, ease-in-out and cubic-bezier. Cubic-
bezier allows the developer to define two points that will be interpolated to a curve that
should be used for the animation.

The keyframe animation type in WebKit is used to describe fixed animation. A keyframe
animation can have from and to properties for a plain start and ending animation, or
percentages to describe the sub-steps within the animation. When the percentage approach
is used it is possible to create a sequential animation:

<body>
<style type="text/css">

@-webkit-keyframes moveandfade
{

0%
{

margin-left: 0;
opacity: 1;

}
33%
{

margin-left: 15px;
opacity: 0.5;

}
67%
{

margin-left: 70px;
opacity: 1;

}
100%
{

margin-left: 100px;
opacity: 0.5;

}
}
div
{

border-style: solid;
border-width: 3px;
opacity: 1;

}
div:hover

24

3.2 Functional comparison

{
-webkit-animation: ’moveandfade’ 2s;

}
</style>
<div style="width: 100px"> </div>
</body>

In this example the div will move from 0 to 100 on the x-axis while fading in and out.

3.2.2 Code reuseability

Code reusability in HTML is achieved through JavaScript and CSS. The style and code
are split out between a CSS and a JavaScript file. Let’s demonstrate this by developing a
button which calls a function upon being clicked and has its text centered horizontally and
vertically with top and bottom margins which are 3 pixels big and left and right margins
which are 10 pixels big. To achieve this the CSS file specifies the margins around the
text:

.button
{

padding: 3px 10px; /* top and bottom 3px, left and right 10px */
}

And the JavaScript file combines this styling information with an onclick handler and the
actual text.

function Button(text, functionToCall)
{

document.write("<div class=\’button\’ onclick=’" +
functionToCall + "’>" + text + "</div>");

}

Note that the JavaScript code uses a class from the CSS file, but does not actually ‘know’
the contents of this file. The HTML page itself should include both the CSS and JavaScript
code and handle accordingly. This is made visible in the following example where the
JavaScript Button function is used to insert a div which has ‘button’ set as its class
property.

<head>
<link href="button.css" rel="stylesheet" type="text/css"></link>
<script src="button.js" type="text/javascript"></script>

</head>
<body>

<script type="text/javascript">
Button(’Test’, ’otherFunction()’);

</script>
</body>

All HTML pages that want to use the JavaScript Button need to duplicate the two lines
contained within the head section as displayed in listing.

QML is an object-oriented markup language which makes it easy to reuse existing code.

25

3. COMPARISON

Each code block that should be reusable should be defined as a QML-Component.

An example using a Button component follows. In this Button component QML bindings
are used to simplify keeping track of the size of the component. Whenever the ‘text’
property on the Button component is set it is automatically drawn in the buttonText Text
component which automatically resizes the container Rectangle. The look and feel of this
QML button are the same as in the HTML example above.

Rectangle
{

id: container

signal clicked
property string text

width: buttonText.width + 20
height: buttonText.height + 6

MouseArea
{

anchors.fill: parent
onClicked: container.clicked()

}

Text
{

anchors.centerIn: container
id: buttonText
text: container.text

}
}

This component can now be used when the component is defined both in the ‘qmldir’ file
in the directory containing the component definition and in an import statement in the
QML-file using the component, where the current directory is automatically imported.

Button
{

text: "Button"
onClicked:
{

otherFunction()
}

}

3.2.3 Context Switching

The main menu application is used to switch between contexts. The user will leave the menu
context and go to either the contacts of media player contexts. This function is especially
important in games. In an ordinary game there is a loading screen before entering the game.
At the moment the loading screen disappears there is a context switch from the loading
context to the gaming context.

In QML the Loader-element is used to switch contexts. The Loader-element allows the
developer to load QML code from other files. Loading code through the Loader-element

26

3.2 Functional comparison

however appends the content of the loaded data to the current file. It does not replace
the current context. The easiest way to overcome this problem is by specifying a top-level
QML-file which only contains a loader and putting each context in a separate file. To
achieve this behavior the developer has to do the following:

//Menu.qml
Loader
{

source: "Contents.qml"
}

//Contents.qml
Item
{

Text
{

text: "Other file."

MouseArea
{

anchors.fill: parent
onClicked:
{

root.source = "Other.qml"
}

}
}

}

The context of the application will now be changed to “Other.qml” when the user clicks
anywhere in the application.
QML does not provide a built-in solution to return to previous contexts. The developer has
to implement this functionality.

Context switching is the basis of Hypertext, which should mean that it is particularly easy
to switch contexts in HTML. Context switching in HTML takes one line of code:

Other file.

When this link is clicked the previous context is completely replaced and cannot be refer-
enced anymore. Extra content can be appended to the link to be able to cache some data
from the previous context.
All links in an anchor tag are hardcoded, to create dynamic links the developer has to use
JavaScript to replace the content of the href property of the link. In HTML it is difficult to
return to previous contexts. One way to circumvent this is by using the built-in JavaScript
history.go() function. There is no guarantee however that the user will end up at the correct
page.
Because the previous context is deleted and a new one is created it is hard to animate the
changes between contexts. One would then have to animate the new context directly while
it is being loaded. HTML does not specify exactly when content should be displayed, which
means that unwanted behavior can occur.

27

3. COMPARISON

3.2.4 Font support

QML and QtWebKit both automatically support the fonts which are installed on the users
system. Both technologies also support loading additional fonts.

QtWebKit supports loading additional fonts through CSS. The @font-face CSS3 rule has
to be used to load these custom fonts.

@font-face
{

font-family: ’Nokia Sans’;
src: url(’Nokia_Sans.ttf’);

}

The Nokia Sans.ttf font can now be used as any font in CSS. The developer has to use the
name used in the font-family property of the @font-face rule.

h1
{

font-family: "Nokia Sans";
}

Loading additional fonts in QML is possible through the FontLoader element.

FontLoader
{

id: nokiaFont
source: "Nokia_Sans.ttf"

}

FontLoader
{

id: webFont
source: "http://www.princexml.com/fonts/steffmann/Starburst.ttf"

}

The FontLoader element loads the font from a source, which can be either a local file or a
network resource which will be downloaded automatically.
The special fonts can now be used by setting the font-family of a QML element containing
text to the name of the loaded font.

Text
{

font-family: nokiaFont.name /* or "Nokia Sans" */
}

3.2.5 Media playback

Media playback functionality between QtWebKit and QML is almost the same even though
QtWebKit uses Phonon and QML uses the QtMobility frameworks to play back media con-
tent. These frameworks give access to all codecs which are installed on the user system.

HTML5 allows a developer to use the browser default media controls by specifying con-
trols=”true” on an audio or video element. Controls can also be developed using JavaScript

28

3.2 Functional comparison

and CSS.

QML does not contain default controls for multimedia elements. QML does add a SoundEf-
fect element, which is a low-level implementation usable for short sounds. The SoundEffect
element is based on QSound, which depending on the platform, enables functionality to use
only WAVE files or also give functionality to use other codecs.

3.2.6 Object placement

Object placement is about getting the content at the position where the designer wants the
content to be. Lets explain how all of this works by using a simple example layout which
will be used in this subsection:

Figure 3.11: Simple table-style layout - A simple example of what an application layout can

look like.

This layout contains two rows and elements with are double-height an double-width.

QML provides three different layouting options: relative to parent, positioners and anchor
layout. All QML elements are automatically layout relative to their parents. Lets take the
following example:

Rectangle
{

color: "red"
id: redRectangle
height: 100
width: 100
x: 100
y: 0

Rectangle
{

color: "green"
height: 100
width: 100
x: 100
y: 0

}
}

Rectangle
{

color: "blue"
height: 100
width: 100
x: 200
y: redRectangle.height + redRectangle.y

}

29

3. COMPARISON

This example will be rendered as seen in figure 3.12. Notice how the green rectangle
is positioned at (200,0). This is because of the relative layouting to its parent (the red
rectangle). The blue rectangle is position vertically using QML property bindings. These
bindings will make sure that when either or both the height and y-position of the red
rectangle change, the position of the blue rectangle will be updated automatically.

0
0

100 200 300 400

100

200

Figure 3.12: QML layout - An example of a QML layout. This will be rendered without the

dashed lines

Positioners are used to layout QML Elements in columns, rows, a grid or a ‘flow’. Columns
and rows speak for themselves, the grid places elements in a grid. This grid does not
however contain functionality which allows elements to have a width or height that span
multiple rows or columns. The ‘Flow’ positioner aligns elements side by side while wrapping
as necessary. The layout displayed in 3.12 cannot be developed using positioners.

The QML anchorlayout can also be used to develop the layout displayed in figure 3.12:

Rectangle
{

color: "red"
id: redRectangle
height: 100
width: 100
x: 100
y: 0

}

Rectangle
{

anchors.left: redRectangle.right
anchors.verticalCenter: redRectangle.verticalCenter
color: "green"
height: 100
width: 100

}

Rectangle
{

anchors.left: redRectangle.right
anchors.top: redRectangle.bottom
color: "blue"
height: 100
width: 100

}

30

3.2 Functional comparison

The left of the green rectangle will always be aligned to the right of the red rectangle and
the green rectangle will always be vertically centered with the red rectangle, so if the height
of the red rectangle increases the green rectangle will move down. The blue rectangle is
also aligned to the right of the red rectangle and to the bottom of the red rectangle. These
concepts can also be applied to develop the table layout in figure 3.11. The QML code for
this layout which is completely scalable can be found in appendix F. Note that half of the
border width is on the inside of the element and half on the outside, therefore the whole
canvas is 602x202 pixels to display a 600x200 table with 2 pixel borders.

HTML provides three different layouting options: layout using tables, layout using divs
and the HTML5 canvas. Tables and divs are the original HTML way of layouting items,
where text is the content that should be visible best. When the text does not fit within
the table cells, or div, the rendering engine will automatically resize the table cell or div to
accommodate the extra content. The HTML5 canvas on the other hand is completely pixel
oriented and does not resize elements automatically. The HTML <table> element is used
to create tables. Within a table there are table rows and table cells which use the <tr>
and<td> elements respectively. Table cells can encompass multiple rows or columns using
the rowspan and colspan properties. The HTML code to create the table as displayed in
figure 3.11 looks as follows:

<style type="text/css">
td
{

border-style: solid;
border-width: 1px;

}
</style>
<table width="600px" height="200px">

<tr>
<td> </td>
<td colspan="2"> </td>
<td rowspan="2"> </td>

</tr>
<tr>

<td> </td>
<td> </td>
<td> </td>

</tr>
</table>

This table can also be created using only <div> elements. The code for the table created
using <div> elements can be found in appendix E. The thing that is immediately clear
when looking at the source code for the div-table is the amount of CSS needed to create
the table layout. <div> elements are only invisible containers that can be modified, this
modification has to be done through CSS. An interesting point is the need for an invisible
cell and extra subdivision cells to create double-height and double-width cells. Since the
table and div element both automatically resize according to their content, there has to
be at least some content in the elements. prints a non-breakable whitespace. The
elements will look empty, but there is content. The div and table elements can only use
percentage and pixel widths and heights. It is impossible to specify the width of a div

31

3. COMPARISON

relative to the size of another div using plain HTML/CSS. Relative sizes can be used when
the DOM-tree is modified using JavaScript.

The final possibility to create the table layout is using the new HTML5 <canvas> element.
Like the div-element the canvas is only a container. A big difference between the div and
the canvas however is the fact that the canvas has to be filled through JavaScript and is
pixel-based. As such the canvas does not contain objects that can be filled. The text is
completely separate from the drawing elements. The canvas element will also not resize to
fit its contents automatically. Extra content will be clipped off.

<head>
<script type="text/javascript">

function fillCanvas()
{

var elem = document.getElementById(’myCanvas’);
var context = elem.getContext(’2d’);

context.lineWidth = 2;
context.strokeRect(1, 1, 150, 100);
context.strokeRect(151, 1, 300, 100);
context.strokeRect(451, 1, 150, 200);
context.strokeRect(1, 101, 150, 100);
context.strokeRect(151, 101, 150, 100);
context.strokeRect(301, 101, 150, 100);

}

window.onload = fillCanvas;
</script>

</head>
<body>

<canvas id="myCanvas" width="602" height="202"></canvas>
</body>

The above code is used to create the table layout using the 2d-version canvas element, the
getContext() method is used to select either a 2d or a 3d context.. Notice how the topleft
rectangle has to start on (1,1). This is the result of the automatic clipping of the canvas
element. All strokes that are painted have half of their stroke on the inside and the other
half on the outside. Since the selected lineWidth is 2, there should be a spacing of 1 pixel
to not clip off half of the line. To make sure there is also no clipping at the bottom right
corner the width of the canvas has to be at least 602x202 to accomodate the table which
is 600x200.

3.2.7 Storage access

Both QML and QtWebKit can use the HTML5 LocalStorage API to store data. This Lo-
calStorage API is however only to be used as a temporary cache, since the LocalStorage
API does not offer any guarantees about data availability [33].

For persistent data storage both QML and QtWebKit support Qt C++-objects and an
HTTP REST application service. When using Qt C++-objects the developer extends the
runtime in which the application runs. In the case of QtWebKit this can be seen as a

32

3.2 Functional comparison

browser-extension. When using the QML it is a plugin which is plugged into the QML

runtime environment (see subsection 2.3.2).

A Qt C++ object which is to be used by QML and/or QtWebKit has to be a QObject

derived class. Within this class, properties defined using the Q PROPERTY() macro and

member functions defined as ‘public slots’ will be available to the runtime as properties

and functions respectively. In appendix D, the sourcecode used to give storage access to

both QtWebKit and QML can be found. The code used is almost the same except for the

difference in linebreak characters between QML and HTML.

To give a webpage access to the methods defined in the Qt C++ browser extension a

reference to its class has to be passed to the webpage global JavaScript object. This is

done using the QWebFrame::addToJavaScriptWindowObject(const QString &name, QOb-

ject *object) method. Once this method has been called, an object with the name specified

in &name is available on the webpage.

Since for every webpage the global JavaScript object is cleared, the addToJavaScriptWin-

dowObject(...) should be called every time a new page is loaded. To accomplish this, a

signal and a slot are required.

connect(page()->mainFrame(), SIGNAL(javaScriptWindowObjectCleared()),
this, SLOT(addBrowserExtension()));

The javaScriptWindowObjectCleared() signal is emitted by a QWebFrame automatically

when the JavaScript window object is cleared. This in turn calls our own addBrowserEx-

tension() slot.

void Browser::addBrowserExtension()
{

page()->mainFrame()->addToJavaScriptWindowObject(
"StorageHandler", m_sh);

}

The only thing that this slot does, is re-adding our Qt C++ object back to the loaded

webpage. In this manner all pages loaded using this web browser will have access to the

functions defined in the ‘StorageHandler’ class.

The C++ object has to be added as a QML type to a plugin to be available within the QML

runtime. In subsection 2.3.2 more information can be found on how to accomplish this.

The other option to have storage access is by using a HTTP REST application service. This

is basically a server which can be accessed using the JavaScript XmlHttpRequest API. All

storage requests from an application will be handled by this server. Building an application

using the XmlHttpRequest API has the advantage that the server can be both on the device

or elsewhere.

33

3. COMPARISON

3.3 Performance comparison

The memory tests used the applications described section 3.1. The source code for these
applications can be found in G. All these tests were carried out on both an Nokia N900
and a Linux Maemo SDK virtual machine (Ubuntu 9.04-based) running with 6-cores and
6 GiB of memory enabled on a machine with a hyper-threaded quad-core Intel Core i7-920
CPU and 8 GiB of memory installed. The host-OS was Windows 7 Ultimate x64. Sev-
eral Qt versions were used for testing, the most recent being commit e43ab8d8 from the
4.7-fremantle branch of the public x11-maemo git repository dated 10 May 2010. There
were no significant differences between the Qt versions used (less than 100K difference in
memory usage).

The memory performance with QtWebKit was tested using the browser for which the source
code can be found in appendices A and B. QML memory performance was tested with the
QML runtime executable. Both runtime applications were run using the “-graphicssystem
raster” command-line option. Audio did not work on the N900 with the Qt version used,
therefore the memory performance results while playing back audio on the N900 were omit-
ted.

Memory usage in kilobytes.

QtWebKit-PC QtWebKit-N900 QML-PC QML-N900

Menu 190864 85076 67988 78604

Contacts 191300 94232 78424 89004

Player - loading 225636 121276

Player - playing 226056 121692

Looking at the table above and figure 3.13 a big memory gap between QML and QtWebKit
can be seen on the desktop, on the N900 however, this memory gap is much smaller, from
more than double on the PC to less than 10% more on the N900. No explanation for this
behaviour could be given. Other interesting facts are the increase of memory for QML on
the N900 over QML on the desktop and the difference in memory needed to play a media
file between QtWebKit and QML. Both technologies use the same media playing backend,
but still the memory increase is around 50 megabytes when using QML and around 30
megabytes when using QtWebKit.

The speed performance for QtWebKit was tested in the same browser as the memory
performance. For QML a special runtime was developed which implements functionality for
speed performance measurement. Source code for this runtime can be found in appendices
A and C.

I used the test applications for which the source code can be found in appendix H. These
test applications display a rotating green rectangle which should run at a maximum speed
of 60 FPS (frames per second). This 60 FPS limit was enforced by forcing the video driver
of the test PCś to use vertical synchronization with a display that had a maximum refresh
rate of 60 Hz.

34

3.3 Performance comparison

��

������

�������

�������

�������

�������

���� �������� �������������� ��������������

�
�
�
�
��
��
��
�
��
�
��
���
�
�
��
�

����������� ������������� ������ ��������

Figure 3.13: Memory performance graph - Graph showing the memory usage of QtWebKit

and QML on the desktop and N900.

These tests have however been run on Windows 7 Ultimate (the host OS of the virtual
machine), the Linux Virtual Machine, a Nokia N900 and Mac OS X 10.6.3 (MacBook
Pro 2.4GHz Core2Duo with 4GiB memory). This has been done to see if there are big
performance differences between the different platforms. The “-graphicssystem raster”
command-line option has been used in all cases.

Maximum frames per second.

QtWebKit QML

Linux 36 60

Mac OS X 53 60

N900 42 60

Windows 7 32 60

Because the maximum FPS was forced to be 60 it is not possible to say if there was a
problem with QtWebKit on Windows which caused the QtWebKit application to be so
much slower than all other versions, or that Qt itself is slower on Windows than on the
other platforms.
QML is faster in all cases, but this might be partly due to the abscence of anti-aliasing.
In figure 3.14 it is clearly visible that QtWebKit applies anti-aliasing, while QML does not.
There are no options to enable or disable the anti-aliasing in either of the technologies. It
is hard to say which technology is the best option due to this aliasing behaviour. In general

35

3. COMPARISON

Figure 3.14: Aliasing in QML and QtWebKit - Screenshot of the performance testing

applications where the aliasing behaviour of the technologies is clearly visible.

the resolutions on smartphone displays is so high that it is hard to see the aliasing artifacts,
which is in favor of QML. In this case, where the contrast between the background and
foreground is big, the aliasing artifacts were clearly visible even on the N900 800x480 pixel
screen.

The test application used is very simple. It only measures frames per second and not the
actual time spent on painting, CPU usage, etc. This application could be extended to draw
multiple rectangles to see if the performance drops linearly. The used Qt version can also
be extended to be able to profile the actual paint commands, to see how much time is
spent on the actual painting, but this is an exercise for the reader.

36

4

Conclusion

This report has given an overview of the similarities and differences between QML and
HTML5 to help to answer the question: Which of QML/JavaScript or HTML5/JavaScript
is a better technology for developing mobile User Interface applications?. This comparison
has been done on several areas, like animation support, code reuseability and memory con-
sumption.

In most areas QtWebKit and QML provide similar functionality. These functionalities are
implemented slightly different, but in general they are similar. Functionalities which are
different are the animation support, context switching and object placement. QML has a
lot more options with regards to animations, including the mixing of sequential and parallel
animations and the support for states. These are very important aspects in modern mo-
bile application development which are a big lacking factor when using HTML. The object
placement in QML is different in such that the objects are not resized automatically, but
this gives the developer more control over how the objects are laid out. In HTML the
layout consists mostly of nested boxes which can have undefined sizes if their contents do
not fit porperly. Context switching in QML is more elaborate with switching the source on
a Loader-element. This does however add the possibility to use animations when switching
from one context to the next. This is hard to do using HTML.

Performance-wise QML might be the better choice on processor and memory constrained
devices. The interface rendering speed is higher, partly at the cost of aliasing artifacts, and
less memory is used by the runtime.

All in all QML is definitely the better choice for mobile use interface development, the per-
formance is better and more options geared towards application development are available.
In some use cases where a developer has experience with HTML and the interface is not
highly animated, HTML might be a better choice, but QML is the better choice in all other
cases.

37

Glossary

API Application Programming Interface.

An interface defined by a software pro-

gram to enable the program to inter-

act with other software programs. An

API is also defined to specify calling

conventions a developer using this pro-

gram should use to develop his own

program,

Application service An external software applica-

tion that handles communication with

other applications. An example is a

webserver.

HTML Hyper Text Markup Language. The

language used to create webpages.

HTML5 Version 5 of HTML which is still in

draft as of April 2010. Added func-

tionalities compared to earlier versions

include local storage and media play-

back functionalities.

HTTP REST HyperText Transfer Protocol Rep-

resentational State Transfer. A soft-

ware architecture style which is used

for the internet. REST defines several

constraints to which a system has to

comply to be called RESTful.

JavaScript A programming language which is

used on webpages in combination with

HTML and CSS.

JSON JavaScript Object Notation. A docu-

ment markup language which can be

easily read by JavaScript.

Kano Model A model developed in 1984 by Pro-

fessor Noriaki Kano classifying cus-

tomer preferences

Linux An Operating System kernel. Most of-

ten Linux means the kernel with the

GNU tools to form the GNU/Linux Op-

erating System.

Maemo Nokia’s newest Linux-based smart-

phone operating system.

QML Qt declarative Markup Language. A

JSON like markup language to used to

develop Qt declarative interfaces.

qmldir file A file containing the location of files to

be loaded by the QML runtime dynam-

ically.

Qt A cross-platform application develop-

ment toolkit developed by Nokia Qt

Development Frameworks.

QtWebKit A part of Qt which adds WebKit with

added Qt functionality to the toolkit.

Signal-Slot mechanism A mechanism within the

Qt Toolkit which allows objects to

communicate with one another.

Smartphone A large-screen, data-centric, hand-

held device designed to offer complete

phone functions whilst simultaneously

functioning as a personal digital assis-

tant (PDA)

SVG Scalable Vector Graphics. An open

XML-format used for vector graphics.

Toolkit A collection of tools which simplifies

software development.

WebKit A web rendering engine. Originally a

fork of KHTML which was developed

by the KDE project.

WRT Web RunTime. A Nokia framework

for developing mobile applications for

Nokia devices.

XML eXtensible Markup Language. A set of

rules to digitally encode documents.

39

References

[1] Clutter About. World Wide Web electronic publication. Available

from: http://www.clutter-project.org/. 2

[2] The Home of the Maemo Community. World Wide Web electronic

publication. Available from: http://maemo.org/intro/. 1

[3] Internet History. World Wide Web electronic publication. Available

from: http://www.computerhistory.org/internet_history/. 9

[4] Maemo background. World Wide Web electronic publication. Avail-

able from: http://maemo.nokia.com/maemo/. 1

[5] Maemo features. World Wide Web electronic publication. Available

from: http://maemo.nokia.com/features/. 2

[6] OpenGL ES Overview. World Wide Web electronic publication.

Available from: http://www.khronos.org/opengles/. 4

[7] Telepathy the Flexible Communications Framework. World Wide

Web electronic publication. Available from: http://telepathy.

freedesktop.org/. 4

[8] Template:Release history table. World Wide Web electronic publica-

tion. Available from: http://wiki.maemo.org/Template:Release_

history_table. 1

[9] What is GStreamer? World Wide Web electronic publication. Avail-

able from: http://gstreamer.freedesktop.org/. 3

[10] OS 2008 Features. World Wide Web electronic publication,

2008. Available from: http://europe.nokia.com/find-products/

devices/os2008/features. 2

[11] Our software strategy. World Wide Web electronic publication,

2009. Available from: http://phx.corporate-ir.net/External.

File?item=UGFyZW50SUQ9MjQxMzB8Q2hpbGRJRD0tMXxUeXBlPTM=

&t=1. xi

[12] Tim Berners-Lee. HTML Tags. World Wide Web electronic

publication, 1991. Available from: http://www.w3.org/History/

19921103-hypertext/hypertext/WWW/MarkUp/Tags.html. 9

[13] Tim Berners-Lee. Re: status. Re: X11 BROWSER for

WWW. World Wide Web electronic publication, 1991. Avail-

able from: http://lists.w3.org/Archives/Public/www-talk/

1991SepOct/0003.html. 9

[14] Tim Berners-Lee. How It All Started. World Wide Web elec-

tronic publication, 2004. Available from: http://www.w3.org/2004/

Talks/w3c10-HowItAllStarted/. 9

[15] Jo Best. Analysis: What is a smart phone? World

Wide Web electronic publication, 2006. Available from:

http://www.silicon.com/technology/mobile/2006/02/13/

analysis-what-is-a-smart-phone-39156391/. 1

[16] Jasmin Blanchette and Mark Summerfield. C++ GUI Pro-

gramming with Qt 4, chapter A Brief History of Qt. Prentice Hall,

2006. 7

[17] Bert Bos. Web Style Sheets. World Wide Web electronic publica-

tion. Available from: http://www.w3.org/Style/. 10

[18] Vannevar Bush. As We May Think. Athlantic Monthly, July 1945,

1945. 9

[19] Stephen Chapman. A Brief History of Javascript. World Wide

Web electronic publication. Available from: http://javascript.

about.com/od/reference/a/history.htm. 13

[20] Linux Devices. Device Profile: Nokia 770 Internet Tablet. World

Wide Web electronic publication, 2005. Available from: http://

www.linuxfordevices.com/c/a/Linux-For-Devices-Articles/

Device-Profile-Nokia-770-Internet-Tablet/. 1

[21] Linux Devices. Nokia 770 Tablet “OS 2006” arrives.

World Wide Web electronic publication, 2006. Avail-

able from: http://www.linuxfordevices.com/c/a/News/

Nokia-770-Tablet-OS-2006-arrives/. 1

[22] Linux Devices. New Nokia N800 Internet Tablet avail-

able now. World Wide Web electronic publication, 2007.

Available from: http://www.linuxfordevices.com/c/a/News/

New-Nokia-N800-Internet-Tablet-available-now/. 1

[23] Douglas Engelbart. Augmenting Human Intellect: A Con-

ceptual Framework. World Wide Web electronic publication,

1962. Available from: http://www.invisiblerevolution.net/

engelbart/full_62_paper_augm_hum_int.html. 9

[24] Nokia Qt Development Frameworks. Faster, More Cost-

Effective Development Using the Qt Cross-Platform Application

& UI Framework. Whitepaper, 2009. 7

[25] Nokia Qt Development Frameworks. All Qt Modules. World

Wide Web electronic publication, 2010. Available from: http:

//doc.trolltech.com/4.6/modules.html. 8

[26] Nokia Qt Development Frameworks. Build System. World

Wide Web electronic publication, 2010. Available from: http:

//doc.trolltech.com/4.6/qt4-intro.html#build-system. 8

[27] Nokia Qt Development Frameworks. Recent Additions to

Qt 4. World Wide Web electronic publication, 2010. Avail-

able from: http://doc.trolltech.com/4.6/qt4-intro.html#

recent-additions-to-qt-4. 8

[28] Quim Gil. Maemo Harmattan Qt And More. World Wide Web elec-

tronic publication, 2009. Available from: http://www.slideshare.

net/qgil/maemo-harmattan-qt-and-more. 2, 4

[29] Web Design Group. CSS Structure and Rules. World Wide

Web electronic publication. Available from: http://htmlhelp.com/

reference/css/structure.html. 11

[30] Kent Hansen. Qt State Machine Framework. World Wide Web

electronic publication, 2009. Available from: http://labs.qt.

nokia.com/blogs/2009/01/30/qt-state-machine-framework/.

11

[31] Andreas Aardal Hanssen. Welcome to Kinetic. World Wide

Web electronic publication, 2008. Available from: http://labs.

trolltech.com/blogs/2008/11/06/welcome-to-kinetic/. 11

41

http://www.clutter-project.org/
http://maemo.org/intro/
http://www.computerhistory.org/internet_history/
http://maemo.nokia.com/maemo/
http://maemo.nokia.com/features/
http://www.khronos.org/opengles/
http://telepathy.freedesktop.org/
http://telepathy.freedesktop.org/
http://wiki.maemo.org/Template:Release_history_table
http://wiki.maemo.org/Template:Release_history_table
http://gstreamer.freedesktop.org/
http://europe.nokia.com/find-products/devices/os2008/features
http://europe.nokia.com/find-products/devices/os2008/features
http://phx.corporate-ir.net/External.File?item=UGFyZW50SUQ9MjQxMzB8Q2hpbGRJRD0tMXxUeXBlPTM=&t=1
http://phx.corporate-ir.net/External.File?item=UGFyZW50SUQ9MjQxMzB8Q2hpbGRJRD0tMXxUeXBlPTM=&t=1
http://phx.corporate-ir.net/External.File?item=UGFyZW50SUQ9MjQxMzB8Q2hpbGRJRD0tMXxUeXBlPTM=&t=1
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://lists.w3.org/Archives/Public/www-talk/1991SepOct/0003.html
http://lists.w3.org/Archives/Public/www-talk/1991SepOct/0003.html
http://www.w3.org/2004/Talks/w3c10-HowItAllStarted/
http://www.w3.org/2004/Talks/w3c10-HowItAllStarted/
http://www.silicon.com/technology/mobile/2006/02/13/analysis-what-is-a-smart-phone-39156391/
http://www.silicon.com/technology/mobile/2006/02/13/analysis-what-is-a-smart-phone-39156391/
http://www.w3.org/Style/
http://javascript.about.com/od/reference/a/history.htm
http://javascript.about.com/od/reference/a/history.htm
http://www.linuxfordevices.com/c/a/Linux-For-Devices-Articles/Device-Profile-Nokia-770-Internet-Tablet/
http://www.linuxfordevices.com/c/a/Linux-For-Devices-Articles/Device-Profile-Nokia-770-Internet-Tablet/
http://www.linuxfordevices.com/c/a/Linux-For-Devices-Articles/Device-Profile-Nokia-770-Internet-Tablet/
http://www.linuxfordevices.com/c/a/News/Nokia-770-Tablet-OS-2006-arrives/
http://www.linuxfordevices.com/c/a/News/Nokia-770-Tablet-OS-2006-arrives/
http://www.linuxfordevices.com/c/a/News/New-Nokia-N800-Internet-Tablet-available-now/
http://www.linuxfordevices.com/c/a/News/New-Nokia-N800-Internet-Tablet-available-now/
http://www.invisiblerevolution.net/engelbart/full_62_paper_augm_hum_int.html
http://www.invisiblerevolution.net/engelbart/full_62_paper_augm_hum_int.html
http://doc.trolltech.com/4.6/modules.html
http://doc.trolltech.com/4.6/modules.html
http://doc.trolltech.com/4.6/qt4-intro.html#build-system
http://doc.trolltech.com/4.6/qt4-intro.html#build-system
http://doc.trolltech.com/4.6/qt4-intro.html#recent-additions-to-qt-4
http://doc.trolltech.com/4.6/qt4-intro.html#recent-additions-to-qt-4
http://www.slideshare.net/qgil/maemo-harmattan-qt-and-more
http://www.slideshare.net/qgil/maemo-harmattan-qt-and-more
http://htmlhelp.com/reference/css/structure.html
http://htmlhelp.com/reference/css/structure.html
http://labs.qt.nokia.com/blogs/2009/01/30/qt-state-machine-framework/
http://labs.qt.nokia.com/blogs/2009/01/30/qt-state-machine-framework/
http://labs.trolltech.com/blogs/2008/11/06/welcome-to-kinetic/
http://labs.trolltech.com/blogs/2008/11/06/welcome-to-kinetic/

REFERENCES

[32] Andreas Aardal Hanssen. Animated Tiles. World Wide

Web electronic publication, 2009. Available from: http://labs.

trolltech.com/blogs/2009/03/04/animated-tiles/. 11

[33] Ian Hickson. Web Storage. World Wide Web electronic pub-

lication, 2009. Available from: http://www.w3.org/TR/2009/

WD-webstorage-20091222/. 32

[34] Gartner Inc. Gartner Says Grey-Market Sales and Destock-

ing Drive Worldwide Mobile Phone Sales to 309 Million Units;

Smartphone Sales Grew 13 Per Cent in Third Quarter of 2009.

World Wide Web electronic publication, 2009. Available from:

http://www.gartner.com/it/page.jsp?id=1224645. xi

[35] Noriaki Kano, Nobuhiku Seraku, Fumio Takahashi, and

Shinichi Tsuji. Attractive quality and must-be quality. Journal of

the Japanese Society for Quality Control, 14:39–48, 1984. 4, 5

[36] Paul Krill. JavaScript creator ponders past, future.

World Wide Web electronic publication, 2008. Available

from: http://www.infoworld.com/d/developer-world/

javascript-creator-ponders-past-future-704. 13

[37] Jan-Arve Sæther. Anchor layout joins the family of QGraph-

icsLayout. World Wide Web electronic publication, 2009.

Available from: http://labs.trolltech.com/blogs/2009/11/26/

anchor-layout-joins-the-family-of-qgraphicslayout/. 11

[38] QtDeclarative Team. Qt Declarative UI. World Wide Web elec-

tronic publication, 2009. Available from: http://labs.trolltech.

com/blogs/2009/05/13/qt-declarative-ui/. 11

[39] The GTK+ Team. The GTK+ Project Overview. World Wide

Web electronic publication, 2007. Available from: http://www.gtk.

org/overview.html. 3

[40] The GStreamer team at http://gstreamer.freedesktop.org/.

gst-launch-0.10(1) - Linux man page. World Wide Web electronic

publication. Available from: http://linux.die.net/man/1/

gst-launch-0.10. 3

[41] thoughtfix. OS2008 “Diablo” update: A pictorial. World

Wide Web electronic publication, 2008. Available from: http:

//tabletblog.com/2008/06/os2008-diablo-update-pictorial.

html. 2

[42] Iago Toral. MAFW: the Media Application Framework for

Maemo. World Wide Web electronic publication, 2009. Available

from: http://www.grancanariadesktopsummit.org/node/219. 4

[43] Judy van Biljon, Paula Kotzé, and Karen Renaud. Mobile

phone usage of young adults: the impact of motivational factors.

In Proceedings of the 20th Australasian Conference on Computer-

Human Interaction: Designing for Habitus and Habitat, pages 57–64,

2008. 4, 5

[44] Don Wells. Extreme Programming: A gentle introduction.

World Wide Web electronic publication, 2009. Available from:

http://www.extremeprogramming.org/. xv

[45] Nathan Willis. Maemo 5, N900 Centerpiece Maemo Sum-

mit 2009. World Wide Web electronic publication, 2009. Avail-

able from: http://www.linux.com/news/embedded-mobile/mids/

147172-maemo-5-n900-centerpiece-maemo-summit-2009. 2

42

http://labs.trolltech.com/blogs/2009/03/04/animated-tiles/
http://labs.trolltech.com/blogs/2009/03/04/animated-tiles/
http://www.w3.org/TR/2009/WD-webstorage-20091222/
http://www.w3.org/TR/2009/WD-webstorage-20091222/
http://www.gartner.com/it/page.jsp?id=1224645
http://www.infoworld.com/d/developer-world/javascript-creator-ponders-past-future-704
http://www.infoworld.com/d/developer-world/javascript-creator-ponders-past-future-704
http://labs.trolltech.com/blogs/2009/11/26/anchor-layout-joins-the-family-of-qgraphicslayout/
http://labs.trolltech.com/blogs/2009/11/26/anchor-layout-joins-the-family-of-qgraphicslayout/
http://labs.trolltech.com/blogs/2009/05/13/qt-declarative-ui/
http://labs.trolltech.com/blogs/2009/05/13/qt-declarative-ui/
http://www.gtk.org/overview.html
http://www.gtk.org/overview.html
http://linux.die.net/man/1/gst-launch-0.10
http://linux.die.net/man/1/gst-launch-0.10
http://tabletblog.com/2008/06/os2008-diablo-update-pictorial.html
http://tabletblog.com/2008/06/os2008-diablo-update-pictorial.html
http://tabletblog.com/2008/06/os2008-diablo-update-pictorial.html
http://www.grancanariadesktopsummit.org/node/219
http://www.extremeprogramming.org/
http://www.linux.com/news/embedded-mobile/mids/147172-maemo-5-n900-centerpiece-maemo-summit-2009
http://www.linux.com/news/embedded-mobile/mids/147172-maemo-5-n900-centerpiece-maemo-summit-2009

Appendix A

SubClassedApplication source code

A.1 subclassedapplication.h

#ifndef SUBCLASSEDAPPLICATION_H
#define SUBCLASSEDAPPLICATION_H

#include <QApplication>
#include <QTimer>

class SubClassedApplication : public QApplication
{

Q_OBJECT

public:
SubClassedApplication(int argc, char** argv);
virtual bool notify(QObject *object, QEvent *event);
void startCounter();

private:
int m_frameCounter;
QTimer *m_timer;

public slotsL
void outputFPS();

};

#endif // SUBCLASSEDAPPLICATION_H

A.2 subclassedapplication.cpp

#include "subclassedapplication.h"

#include <QDebug>

SubClassedApplication::SubClassedApplication(int argc, char **argv)
: QApplication(argc, argv)

{
m_frameCounter = 0;

}

void SubClassesApplication::startCointer()
{

m_timer = new QTimer();
m_timer->connect(m_timer, SIGNAL(timeout()), this, SLOT(outputFPS()));
m_timer->start(5000);

43

A. SUBCLASSEDAPPLICATION SOURCE CODE

}

bool SubClassedApplication::notify(QObject *object, QEvent *event)
{

if(event->type() == QEvent::Paint)
{

m_frameCounter++;
}
return QApplication::notify(object, event);

}

void SubClassedApplication::outputFPS()
{

if(m_frameCounter != 0)
{

qDebug() << m_frameCounter << "frames/5sec:" << m_frameCounter / 5 << "FPS.";
}

}

44

Appendix B

Browser source code

B.1 main.cpp

#include "browser.h"
#include "subclassedapplication.h"

int main(int argc, char *argv[])
{

SubClassedApplication app(argc, argv);
new Browser();
app.startCounter();
return app.exec();

}

B.2 browser.h

#ifndef BROWSER_H
#define BROWSER_H

#include <QtGui>
#include <QtWebKit>

#include "filestorageplugin.h"

class Browser : public QWebView
{

Q_OBJECT

public:
Browser();
~Browser();

private:
FileStoragePlugin *m_fsp;

private slots:
void addBrowserExtension();

};

#endif //BROWSER_H

45

B. BROWSER SOURCE CODE

B.3 browser.cpp

#include "browser.h"

#define APP_WIDTH 800
#define APP_HEIGHT 480

Browser::Browser()
: m_fsp(new FileStoragePlugin(this))

{
setFixedSize(APP_WIDTH, APP_HEIGHT);
setGeometry((qApp->desktop()->width() / 2) - (APP_WIDTH / 2),

(qApp->desktop()->height() / 2) - (APP_HEIGHT / 2),
APP_WIDTH, APP_HEIGHT);

QWebSettings::globalSettings()->setAttribute(QWebSettings::PluginsEnabled, 0);

connect(page()->mainFrame(), SIGNAL(javaScriptWindowObjectCleared()),
this, SLOT(addFSPlugin()));

setUrl(QFileDialog::getOpenFileName(this, "Open HTML file",
QDir::homePath(), "HTML Files (*.html)"));

show();
}

Browser::~Browser()
{
}

void Browser::addBrowserExtension()
{

page()->mainFrame()->addToJavaScriptWindowObject("FileStoragePlugin", m_fsp);
}

46

Appendix C

Viewer source code

C.1 main.cpp

#include "subclassedapplication.h"
#include "viewer.h"

int main(int argc, char *argv[])
{

SubClassedApplication app(argc, argv);
new Viewer();
app.startCounter();
return app.exec();

}

C.2 viewer.h

#ifndef VIEWER_H
#define VIEWER_H

#include <QtGui>
#include <QtDeclarative>

class Viewer : public QDeclarativeView
{

Q_OBJECT

public:
Viewer();
~Viewer();

};

#endif //Viewer_H

C.3 viewer.cpp

#include "viewer.h"

#define APP_WIDTH 800
#define APP_HEIGHT 480

Viewer::Viewer()
{

47

C. VIEWER SOURCE CODE

setFixedSize(APP_WIDTH, APP_HEIGHT);
setGeometry((qApp->desktop()->width() / 2) - (APP_WIDTH / 2),

(qApp->desktop()->height() / 2) - (APP_HEIGHT / 2),
APP_WIDTH, APP_HEIGHT);

QUrl loadedFile = QUrl::fromLocalFile(QFileDialog::getOpenFileName(
this, "Open QML file", QDir::homePath(), "QML Files (*.qml)"));

engine()->addImportPath(loadedFile.toString());
setSource(loadedFile);
show();

}

Viewer::~Viewer()
{
}

48

Appendix D

Storage handler source code

D.1 storagehandler.h

#ifndef STORAGEHANDLER_H
#define STORAGEHANDLER_H

#include <QtSql>

class StorageHandler : public QObject
{

Q_OBJECT

public:
StorageHandler(QObject* parent = 0);
~StorageHandler();

private:
QSqlDatabase m_db;
QSqlQuery m_query;

public slots:
int initializeDatabase(QVariant data);
QString loadFromDatabase();
void saveToDatabase(QVariant query, QVariantList values);

};

#endif //STORAGEHANDLER_H

D.2 storagehandler.cpp

#include "storagehandler.h"

StorageHandler::StorageHandler(QObject* parent)
{
}

StorageHandler::~StorageHandler()
{

m_db.close();
}

int StorageHandler::initializeDatabase(QVariant data)
{

m_db = QSqlDatabase::addDatabase("QSQLITE");
m_db.setDatabaseName(QDir::tempPath() + "/" + data.toString());

49

D. STORAGE HANDLER SOURCE CODE

bool ok = m_db.open();
if(ok)
{

m_query = QSqlQuery(m_db);
}
return ok;

}

QString StorageHandler::loadFromDatabase()
{

m_query.exec("SELECT * FROM contacts");
int nameNo = m_query.record().indexOf("name");
int phoneNo = m_query.record().indexOf("phonenumber");
QString returnString;
while (m_query.next()) {

returnString.append(m_query.value(nameNo).toString() + ": " + \
m_query.value(phoneNo).toString() + \
"\n
\n");
/* "\n
\n" is used for HTML to insert a line-break, when using
* QML only "\n" is needed. This is the only difference in code
* between the QtWebKit and QML versions of this handler.
*/

}
return returnString;

}

void StorageHandler::saveToDatabase(QVariant query, QVariantList values)
{

m_query.prepare(query.toString());
int counter = 0;
while (counter < values.length())
{

m_query.addBindValue(values.at(counter));
counter++;

}
m_query.exec();

}

50

Appendix E

<div> table source code

<html>
<head>
</head>
<body>
<style type="text/css">

div
{

border-style: solid;
border-width: 1px;

}
.tablewrapper
{

border: none;
position: relative;

}
.table
{

display: table;
}
.row
{

border: none;
display: table-row;

}
.cell
{

width: 150px;
display: table-cell;

}
.cell.empty
{

border: none;
width: 150px;

}
.cell.colspanned
{

width: 300px;
}
.cell.subcelled
{

width: 150px;
}
.cell.rowspanned
{

position: absolute;
top: 1;
bottom: 1;
width: 150px;

}

51

E. <DIV> TABLE SOURCE CODE

</style>
<div class="tablewrapper">

<div class="table">
<div class="row">

<div class="cell"> </div>
<div class="colspanned cell"> </div>
<div class="rowspanned cell"> </div>

</div>
<div class="row">

<div class="cell"> </div>
<div class="cell" style="border:none;">

<div class="subcelled cell"> </div>
<div class="subcelled cell"> </div>

</div>
<div class="empty cell"></div>

</div>
</div>

</div>
</body>
</html>

52

Appendix F

QML table layout

import Qt 4.7

Item
{

width: 602
height: 202

Rectangle
{

border.width: 2
height: 100
id: topLeft
width: 100
x: 100
y: 1

}

Rectangle
{

anchors.left: topLeft.right
anchors.top: topLeft.top
border.width: 2
height: topLeft.height
id: topCenter
width: topLeft.width * 2

}

Rectangle
{

anchors.left: topCenter.right
anchors.top: topLeft.top
border.width: 2
height: topLeft.height * 2
id: topRight
width: topLeft.width

}

Rectangle
{

anchors.left: topLeft.left
anchors.top: topLeft.bottom
border.width: 2
height: topLeft.height
id: bottomLeft
width: topLeft.width

}

Rectangle
{

anchors.left: bottomLeft.right

53

F. QML TABLE LAYOUT

anchors.top: topLeft.bottom
border.width: 2
height: topLeft.height
id: bottomLeftCenter
width: topLeft.width

}

Rectangle
{

anchors.left: bottomLeftCenter.right
anchors.top: topLeft.bottom
border.width: 2
height: topLeft.height
id: bottomRightCenter
width: topLeft.width

}

}

54

Appendix G

Memory tests source code

G.1 Menu (V3)

G.1.1 HTML

<!DOCTYPE html>
<html>
<head>
<title>Main menu</title>
<style type="text/css">
.wraptocenter {

display: table-cell;
text-align: center;
vertical-align: middle;
width: 800px;
height: 430px;

}
.wraptocenter * {

vertical-align: middle;
}
</style>
</head>
<body>

<div class="wraptocenter">
<center>
<table>

<tr>
<td align="center">

<h2>

Contacts
</h2>

</td>
<td align="center">

<h2>

Player
</h2>

</td>
</tr>

</table>
</center>

</div>
</body>
</html>

55

G. MEMORY TESTS SOURCE CODE

G.1.2 QML

G.1.2.1 Menu.qml

import Qt 4.7

Loader
{

property url nextSource

id: rootLoader

width: 800
height: 480

resizeMode: Loader.SizeItemToLoader
source: "Contents.qml"

SequentialAnimation
{

id: animation
NumberAnimation { target: rootLoader; property: "opacity"; to: 0; }
ScriptAction { script: source = nextSource; }
NumberAnimation { target: rootLoader; property: "opacity"; to: 1; }

}
}

G.1.2.2 Contents.qml

import Qt 4.7

Item
{

Row
{

anchors.horizontalCenter: parent.horizontalCenter;
anchors.verticalCenter: parent.verticalCenter

MenuItem
{

id: firstItem
image: "images/contacts.png"
fileSource: "../Contacts/Contacts.qml"
text: "Contacts"

}

MenuItem
{

anchors.left: firstItem.right
image: "images/player.png"
fileSource: "../Player/Player.qml"
text: "Player"

}

}
}

G.1.2.3 MenuItem.qml

import Qt 4.7

Item
{

id: itemRoot

property alias image: itemImage.source
property alias text: itemText.text

property string fileSource

56

G.2 Contacts (V3)

width: itemImage.width
height: itemImage.height + itemText.height

Image
{

id: itemImage

MouseArea
{

acceptedButtons: Qt.LeftButton | Qt.RightButton
anchors.fill: parent
hoverEnabled: true
onClicked:
{

rootLoader.nextSource = itemRoot.fileSource;
animation.start();

}
}

}

Text
{

anchors.horizontalCenter: itemImage.horizontalCenter
anchors.top: itemImage.bottom
font.bold: true; font.pixelSize: 24
id: itemText
text: "Contacts"

}
}

G.2 Contacts (V3)

G.2.1 HTML

G.2.1.1 contacts.html

<!DOCTYPE html>
<html>
<head>

<link rel="stylesheet" type="text/css" href="contactsStyle.css" />
<script type="text/javascript" src="contactsCode.js" />

</head>
<body>

<div id="topBar" class="topandbottom">
<div class="close">

</div>

</div>
<div id="dbContents">Shown when not using special QtWebKit browser.</div>
<div id="bottomBar" class="topandbottom">

<div class="button">
<div class="buttonContent" onclick="startContactAdder();">

Add Contact
</div>

</div>
</div>
</body>
</html>

G.2.1.2 contactsCode.js

function addContact()
{

var nameInput = document.getElementById(’nameInput’);

57

G. MEMORY TESTS SOURCE CODE

var phoneInput = document.getElementById(’phoneInput’);
if(nameInput.value == null || nameInput.value == "" ||

phoneInput.value == null || phoneInput.value == "")
{

alert("Please fill in all fields");
}
else
{

var query = "INSERT into contacts(name, phonenumber) values (?, ?)";
var values = [nameInput.value, phoneInput.value];
FileStoragePlugin.saveToDatabase(query, values);

}
document.body.removeChild(document.getElementById(’contactAdder’));
fillPage();

}

function cancelAdd()
{

document.body.removeChild(document.getElementById(’contactAdder’));
fillPage();

}

function fillPage()
{

document.getElementById("dbContents").innerHTML = FileStoragePlugin.loadFromDatabase();
}

function startContactAdder()
{

var contactAdder = document.createElement(’div’);
contactAdder.setAttribute("id", "contactAdder");
document.body.appendChild(contactAdder);
document.getElementById(’contactAdder’).innerHTML= "<table><tr><td> \

Name:</td><td><input id=\"nameInput\" type=text size=20 maxlength=’128’ />\
</td></tr><tr><td>Phone number:</td><td>\
<input id=\"phoneInput\" type=text size=20 maxlength=\"20\"/>\
</td></tr></table><div id=\"bottomBar\" class=\"topandbottom\">\
<div class=\"button\">\
<div class=\"buttonContent\" onclick=\"addContact();\">\
Accept</div></div><div class=\"button\">\
<div class=\"buttonContent\" onclick=\"cancelAdd();\">\
Cancel</div></div></div>\n";

}

function startDB()
{

var succeeded = FileStoragePlugin.initializeDatabase(’Contacts’);
if(succeeded == 0)
{

alert("Database initialization failed.");
}
fillPage();

}

window.onload = function()
{

startDB();
}

G.2.1.3 contactsStyle.css

body { font-family: Arial, Helvetica, sans-serif }

td
{

padding:0px;
vertical-align:top;

}

.button

58

G.2 Contacts (V3)

{
border:3px solid black;
float:right;
height:43px;
margin-bottom:5px;
margin-right:5px;
position:relative;
width:225px;

}

.buttonContent
{

font-weight:bold;
font-size:32px;
height:43px;
margin-top:-20px;
position:absolute;
text-align:center;
top:50%;
width:100%;

}

.close
{

margin-right:5px;
margin-top:5px;

}

.topandbottom
{

background-color:#FFF;
height:53px;
position:fixed;
text-align:right;
width: 100%;

}

#bottomBar
{

bottom:0px;
position:fixed;
right:0px;

}

#contactAdder
{

bottom:0;
background-color:#FFF;
font-size:28px;
height:6em;
left:0;
position: fixed;
width:100%;

}

#dbContents
{

font-size:36px;
font-weight:bold;
margin:0px;
padding:0px;
top:0px;

}

#topBar
{

top:0px;
position:fixed;
left:0px;

}

59

G. MEMORY TESTS SOURCE CODE

G.2.2 QML

G.2.2.1 Contacts.qml

import Qt 4.7
import "importCore" 1.0

Item
{

FileStoragePlugin
{

id: fileStoragePlugin;
Component.onCompleted: {

initializeDatabase("Contacts");
contactsText.text = fileStoragePlugin.loadFromDatabase();

}
}

Image
{

anchors.right: parent.right
anchors.rightMargin: 5
anchors.top: parent.top
anchors.topMargin: 5
id: closeImage
source: "images/close.png"

MouseArea
{

anchors.fill: parent
onClicked:
{

rootLoader.nextSource = "../Menu/Contents.qml"
animation.start();

}
}

}

Button
{

anchors.bottom: parent.bottom
anchors.right: parent.right
id: addButton
onClicked:
{

adder.opacity = 100;
}
text: "Add Contact"

}

Flickable
{

anchors.bottom: addButton.top
anchors.top: closeImage.bottom
clip: true
contentHeight: contactsText.height
height: parent.height - closeImage.height
id: mainFlickable
width: parent.width

Text
{

font.bold: true
font.pixelSize: 32
id: contactsText
text: ""

}
}

ContactAdder
{

anchors.bottom: parent.bottom

60

G.2 Contacts (V3)

height: 160
width: parent.width
id: adder
opacity: 0

}
}

G.2.2.2 ContactAdder.qml

import Qt 4.7

Rectangle
{

color: "white"

Text
{

anchors.leftMargin: 25
font.pixelSize: 32
id: nameText
text: "Name:"

}

Text
{

anchors.leftMargin: 25
anchors.top: nameText.bottom
font.pixelSize: 32
id: numberText
text: "Phone number:"

}

Rectangle
{

anchors.horizontalCenter: phoneField.horizontalCenter
anchors.verticalCenter: nameText.verticalCenter
border.width: 3
height: 43
id: nameField
width: 250

TextEdit
{

anchors.fill: parent
anchors.leftMargin: 5
font.pixelSize: 32
id: nameEdit

}
}

Rectangle
{

anchors.verticalCenter: numberText.verticalCenter
border.width: 3
height: 43
id: phoneField
width: 250
x: 250

TextEdit
{

anchors.fill: parent
anchors.leftMargin: 5
font.pixelSize: 32
id: phoneEdit

}
}

Button
{

anchors.bottom: parent.bottom
anchors.right: parent.right
id: acceptButton

61

G. MEMORY TESTS SOURCE CODE

onClicked:
{

var query = "INSERT into contacts(name, phonenumber) values (?, ?)";
var values = [nameEdit.text, phoneEdit.text];
fileStoragePlugin.saveToDatabase(query, values);
parent.opacity = 0;
nameEdit.text = "";
phoneEdit.text = "";
contactsText.text = fileStoragePlugin.loadFromDatabase();

}
text: "Accept"

}

Button
{

anchors.bottom: parent.bottom
anchors.right: acceptButton.left
onClicked:
{

parent.opacity = 0;
nameEdit.text = "";
phoneEdit.text = "";

}
text: "Cancel"

}
}

G.2.2.3 Button.qml

import Qt 4.7

Rectangle
{

property alias text: innerText.text
signal clicked

anchors.bottomMargin: 5
anchors.rightMargin: 5
border.color: "black"
border.width: 3
height: 43
id: container
width: 225

MouseArea
{

anchors.fill: parent
onClicked: container.clicked()

}

Text
{

anchors.centerIn: parent
font.family: "Arial"
font.pixelSize: 32
id: innerText

}
}

G.3 Player (V3)

G.3.1 HTML

G.3.1.1 player.html

<!DOCTYPE html>
<html>

62

G.3 Player (V3)

<head>
<title>Main menu</title>
<link rel="stylesheet" type="text/css" href="playerStyle.css" />
<script type="text/javascript" src="playerCode.js"></script>

</head>
<body>

<div id="topBar" class="topBar-landscape">
<div class="close">

</div>

</div>
<div id="content">

<div class="wrapmiddletocenter">
Audio filename
<div id="timer">

00:00
</div>

</div>
<div class="wrapbottomtocenter" id="bottomBar">

<div class="buttonContainer">
<img src="images/back.png" id="backIcon"

onmousedown="startTimer(’back’);"
onmouseup="stopTimer(’back’);"
width="100%" height="100%" />

</div>
<div class="buttonContainer">

<img src="images/play.png" id="playerIcon"
onclick="playpause();" width="100%"
height="100%" />

</div>
<div class="buttonContainer">

<img src="images/forward.png" id="forwardIcon"
onmousedown="startTimer(’forward’);"
onmouseup="stopTimer(’forward’);"
width="100%" height="100%" />

</div>
</div>

</div>
<audio src="File.wav" id="audioElement" ontimeupdate="time()"></audio>
</body>
</html>

G.3.1.2 playerCode.js

var playing = 0;

function playpause()
{

var image = document.getElementById("playerIcon");
var audio = document.getElementById("audioElement");

if (!playing)
{

image.src = "images/pause.png";
audio.play();

}
else
{

audio.pause();
image.src = "images/play.png";

}
playing = !playing;

}

function back()
{

var audio = document.getElementById("audioElement");

63

G. MEMORY TESTS SOURCE CODE

if(audio.currentTime > 1)
{

audio.currentTime = audio.currentTime - 1;
}

}

function forward()
{

var audio = document.getElementById("audioElement");

if(audio.currentTime < audio.duration - 1)
{

audio.currentTime = audio.currentTime + 1;
}

}

function gotolandscape()
{

var topbar = document.getElementById("topBar");
topbar.className = "topBar-landscape";

}

function gotoportrait()
{

var topbar = document.getElementById("topBar");
topbar.className = "topBar-portrait";

}

function startTimer(text)
{

if(text == "forward")
{

forwardTimer = setInterval("forward()", 250);
}
else if(text == "back")
{

backTimer = setInterval("back()", 250);
}

}

function stopTimer(text)
{

if(text == "forward")
{

clearInterval(forwardTimer);
}
else if(text == "back")
{

clearInterval(backTimer);
}

}

function time()
{

var audio = document.getElementById("audioElement");
var timer = document.getElementById("timer");

var sec = Math.round(audio.currentTime);
var min = Math.floor(sec/60);
sec = sec % 60;
t = two(min) + ":" + two(sec);

timer.innerHTML = t;
}

function two(x) {return ((x>9)?"":"0")+x}

G.3.1.3 playerStyle.css

body { font-family: Arial, Helvetica, sans-serif }

div {

64

G.3 Player (V3)

-webkit-transition-property: opacity;
-webkit-transition-duration: 2s;

}

.buttonContainer
{

float: left;
width: 192px;
height: 192px;

}

.close
{

margin-left: 5px;
margin-right: 5px;
margin-top: 5px;

}

.topBar-landscape
{

text-align:right;
}

.topBar-portrait
{

text-align:left;
}

.wrapbottomtocenter
{

display:table-cell;
text-align:center;
vertical-align:middle;
width: 692px;
height: 200px;

}

.wrapmiddletocenter
{

display:table-cell;
font-size:32px;
text-align:center;
width:800px;
height:200px;

}

#content
{

bottom:0px;
position:fixed;
right:0px;
height: 75%;

}

#bottomBar
{

bottom:0px;
position:fixed;
right:0px;
height:192px;

}

#timer
{

display:table-cell;
text-align:center;
vertical-align:bottom;
width:800px;
height:150px;

}

#topBar
{

65

G. MEMORY TESTS SOURCE CODE

top:0px;
position:fixed;
left:0px;
background-color:#FFF;
height:53px;
position:fixed;
width: 100%;

}

G.3.2 QML

G.3.2.1 Player.qml

import Qt 4.7
import Qt.multimedia 4.7
import "playerCode.js" as Code

Item
{

height: 480
id: main
width: 800

Image
{

anchors.leftMargin: 5
anchors.right: parent.right
anchors.rightMargin: 5
anchors.top: parent.top
anchors.topMargin: 5
id: closeImage
source: "images/close.png"

MouseArea
{

anchors.fill: parent
onClicked:
{

rootLoader.nextSource = "../../Menu/V3/Contents_2.qml"
animation.start();

}
}

}

Item
{

anchors.centerIn: parent
height: 480
id: container
state: (runtime.orientation == Orientation.Portrait) ? ’’ : ’ Portrait ’
width: 800

Item
{

anchors.bottom: parent.bottom
height: parent.height * 0.75
id: playerControls
width: parent.width

Text
{

anchors.horizontalCenter: parent.horizontalCenter
font.pixelSize: 32
id: urlText
text: "Audio filename"

}

Text
{

anchors.horizontalCenter: parent.horizontalCenter
anchors.bottom: playerImage.top
font.pixelSize: 32

66

G.3 Player (V3)

id: timeText
text: Code.time(audioElement.position);

}

Image
{

anchors.right: playerImage.left
anchors.verticalCenter: playerImage.verticalCenter
height: playerImage.height
id: backImage
source: "images/back.png"
width: playerImage.width

MouseArea
{

anchors.fill: parent
onPressed:
{

Code.startTimer("back");
}
onReleased:
{

Code.stopTimer("back");
}

}
}

Image
{

anchors.bottom: parent.bottom
anchors.horizontalCenter: parent.horizontalCenter
id: playerImage
source: "images/play.png"

MouseArea
{

anchors.fill: parent
onClicked:
{

Code.playpause();
}

}
}

Image
{

anchors.left: playerImage.right
anchors.verticalCenter: playerImage.verticalCenter
height: playerImage.height
id: forwardImage
source: "images/forward.png"
width: playerImage.width

MouseArea
{

anchors.fill: parent
onPressed:
{

Code.startTimer("forward");
}
onReleased:
{

Code.stopTimer("forward");
}

}
}

}

Audio
{

id: audioElement
source: "../Information_First.wav"

}

67

G. MEMORY TESTS SOURCE CODE

states:
State
{

name: "Portrait"

PropertyChanges
{

target: container
rotation: -90
width: 480
height: 800

}
PropertyChanges
{

target: playerImage
width: 128
height: 128

}
AnchorChanges
{

target: closeImage
anchors.right: undefined
anchors.left: main.left

}
}

transitions:
Transition
{

from: ""
to: "Portrait"
reversible: true

ParallelAnimation
{

AnchorAnimation {}
NumberAnimation
{

properties: "rotation, width, height, x"
duration: 500
easing.type: "InOutBack"

}
}

}
}

}

G.3.2.2 playerCode.js

var playing = 0;
var t = 0;
var forwardTimer;
var backTimer;

function playpause()
{

if (!playing)
{

playerImage.source = "images/pause.png";
audioElement.play();

}
else
{

audioElement.pause();
playerImage.source = "images/play.png";

}
playing = !playing;

}

function back()
{

68

G.3 Player (V3)

if(audioElement.position > 1000000)
{

audioElement.position = audioElement.position - 1000000;
}

}

function forward()
{

if(audioElement.position < audioElement.duration - 1000000)
{

audioElement.position = audioElement.position + 1000000;
}

}

function startTimer(text)
{

if(text == "forward")
{

forwardTimer = setInterval("forward()", 250);
}
else if(text == "back")
{

backTimer = setInterval("back()", 250);
}

}

function stopTimer(text)
{

if(text == "forward")
{

clearInterval(forwardTimer);
}
else if(text == "back")
{

clearInterval(backTimer);
}

}

function two(x) {return ((x>9)?"":"0")+x}

function time(ms)
{

var sec = Math.floor(ms/1000)
ms = ms % 1000

var min = Math.floor(sec/60)
sec = sec % 60
t = two(sec)

min = min % 60
t = two(min) + ":" + t

return t
}

69

Appendix H

Performance test source code

H.1 HTML

<!DOCTYPE html>
<html>

<head>
<style type="text/css">

#rotatediv
{

-webkit-animation-name: rotateThis;
-webkit-animation-duration: 2s;
-webkit-animation-iteration-count: infinite;
-webkit-animation-timing-function: linear;
background-color: green;
height: 100px;
left: 100px;
position: absolute;
top: 100px;
width: 100px;

}

@-webkit-keyframes rotateThis
{

from
{

-webkit-transform:rotate(0deg);
}
to
{

-webkit-transform:rotate(360deg);
}

}
</style>

</head>
<body>

<div id="rotatediv"> </div>
</body>

</html>

H.2 QML

import Qt 4.7

Item
{

height: 800

71

H. PERFORMANCE TEST SOURCE CODE

width: 480

Rectangle
{

color: "green"
height: 100
width: 100
x: 100
y: 100

RotationAnimation on rotation
{

duration: 2000
loops: Animation.Infinite
from: 0
to: 360

}
}

}

72

Copyright 2010

	List of Figures
	Introduction
	Problem definition
	Assignment
	Sub questions
	Objectives
	Products

	Plan of approach
	1 Mobile
	1.1 Maemo
	1.1.1 History of Maemo
	1.1.2 Maemo technologies
	1.1.2.1 Clutter
	1.1.2.2 GStreamer
	1.1.2.3 GTK+
	1.1.2.4 Hildon
	1.1.2.5 MAFW
	1.1.2.6 OpenGL ES
	1.1.2.7 Qt
	1.1.2.8 Telepathy

	1.2 Requirements
	1.3 Conclusion

	2 Technologies
	2.1 Qt
	2.1.1 History of Qt
	2.1.2 Qt 4 Features

	2.2 HTML
	2.2.1 History of HTML
	2.2.2 Basic structure
	2.2.3 Cascading Style Sheets

	2.3 QML
	2.3.1 History of QML
	2.3.2 Basic structure

	2.4 JavaScript
	2.4.1 History of JavaScript
	2.4.2 Basic structure
	2.4.3 JavaScript-HTML connection
	2.4.4 JavaScript-QML connection

	3 Comparison
	3.1 Application design
	3.1.1 Main menu application
	3.1.2 Contacts application
	3.1.3 Media player application

	3.2 Functional comparison
	3.2.1 Animations
	3.2.2 Code reuseability
	3.2.3 Context Switching
	3.2.4 Font support
	3.2.5 Media playback
	3.2.6 Object placement
	3.2.7 Storage access

	3.3 Performance comparison

	4 Conclusion
	Glossary
	References
	A SubClassedApplication source code
	A.1 subclassedapplication.h
	A.2 subclassedapplication.cpp

	B Browser source code
	B.1 main.cpp
	B.2 browser.h
	B.3 browser.cpp

	C Viewer source code
	C.1 main.cpp
	C.2 viewer.h
	C.3 viewer.cpp

	D Storage handler source code
	D.1 storagehandler.h
	D.2 storagehandler.cpp

	E <div> table source code
	F QML table layout
	G Memory tests source code
	G.1 Menu (V3)
	G.1.1 HTML
	G.1.2 QML
	G.1.2.1 Menu.qml
	G.1.2.2 Contents.qml
	G.1.2.3 MenuItem.qml

	G.2 Contacts (V3)
	G.2.1 HTML
	G.2.1.1 contacts.html
	G.2.1.2 contactsCode.js
	G.2.1.3 contactsStyle.css

	G.2.2 QML
	G.2.2.1 Contacts.qml
	G.2.2.2 ContactAdder.qml
	G.2.2.3 Button.qml

	G.3 Player (V3)
	G.3.1 HTML
	G.3.1.1 player.html
	G.3.1.2 playerCode.js
	G.3.1.3 playerStyle.css

	G.3.2 QML
	G.3.2.1 Player.qml
	G.3.2.2 playerCode.js

	H Performance test source code
	H.1 HTML
	H.2 QML

